分子植物育种
(
网络版
), 2016
年
,
第
14
卷
,
第
1062-1071
页
Fenzi Zhiwu Yuzhong (Online), 2016, Vol.14, 1062-1071
Copyright © 2016 BioPublisher 1068
向编辑的组成元件转移到植物细胞中最常用的方
法为农杆菌
Ti
质粒介导法,存在浸染效率不高和物
种限制等问题,而一些植物病毒
(
如双生病毒等
(Baltes et al., 2014))
具有浸染效率高和宿主范围广
等优点,将来可能可以改造成为运载这些元件的有
效、简单的工具;
3)
作为“明星”的
CRISPR-Cas9
技术存在
sgRNA
识别位点受限于
PAM
序列的问
题,因此不能识别基因组任意位点,大大限制其应
用,而Ⅲ型
CRISPR-Cas
系统识别位点不受
PAM
的
限制
,
靶位点选择上更自由
(
李君等
, 2013)
。因此
,
今后对
CRISPR/Cas
系统进行更深入的研究和探
索,使该技术具有更广泛的适用性。相信在不久的
将来,随着对人们对生物世界的深入的探索和认
识,高效、特异、简单的基因组靶向编辑技术将会
在植物研究领域大放光彩。
作者贡献
廖鹏飞完成论文初稿的撰写和修改;聂旺、余
雅心和童普国参与参考文献查找和整理以及图表
绘制;李绍波和朱友林指导论文撰写和修改。全体
作者都阅读并同意最终的文本。
致谢
本研究由国家自然科学基金
(31260313)
和江西
省自然科学基金
(20132BAB204012)
共同资助。
参考文献
Baltes N.J., Gil-Humanes J., Cermak T., Atkins P.A., and
Voytas D.F., 2014, DNA replicons for plant genome
engineering, Plant Cell, 26(1): 151-163
Beumer K.J., Trautman J.K., Christian M., Dahlem T.J., Lake
C.M., Hawley R.S., Grunwald D.J., Voytas D.F., and
Carroll D., 2013, Comparing zinc finger nucleases and
transcription activator-like effector nucleases for gene
targeting in Drosophila, G3: Genes Genomes Genetics,
3(10): 1717-1725
Bibikova M., Golic M., Golic K.G., and Carroll D., 2002,
Targeted chromosomal cleavage and mutagenesis in
Drosophila using zinc-finger nucleases, Genetics, 161(3):
1169-1175
Bitinaite J., Wah D.A., Aggarwal A.K., and Schildkraut I., 1998,
FokI dimerization is required for DNA cleavage, PNAS,
95(18): 10570-10575
Boch J., and Bonas U., 2010, Xanthomonas AvrBs3
Family-Type III Effectors: Discovery and Function, Annu
Rev Phytopathol, 48: 419-436
Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay
S., Lahaye T., Nickstadt A., and Bonas U., 2009, Breaking
the code of DNA binding specificity of TAL-type III
effectors, Science, 326(5959): 1509-1512
Brooks C., Nekrasov V., Lippman Z.B., and Van Eck J., 2014,
Efficient Gene Editing in Tomato in the First Generation
Using the Clustered Regularly Interspaced Short
Palindromic Repeats/CRISPR-Associated9 System, Plant
Physiol, 166(3): 1292-1297
Brouns S.J.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis
R.J.H., Snijders A.P.L., Dickman M.J., Makarova K.S.,
Koonin E.V., and Van Der Oost J., 2008, Small CRISPR
RNAs guide antiviral defense in prokaryotes, Science,
321(5891): 960-964
Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y.,
Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., and
Voytas D.F., 2011, Efficient design and assembly of
custom TALEN and other TAL effector-based constructs
for DNA targeting, Nucleic Acids Res, 39(12): e82
Charpentier E., and Doudna J.A., 2013, Biotechnology:
Rewriting a genome, Nature, 495(7439): 50-51
Chen K.L., and Gao C.X., 2014, Targeted genome modification
technologies and their applications in crop improvements,
Plant Cell Rep, 33(4): 575-583
Chen S.J., Oikonomou G., Chiu C.N., Niles B.J., Liu J., Lee
D.A., Antoshechkin I., and Prober D.A., 2013, A
large-scale in vivo analysis reveals that TALENs are
significantly more mutagenic than ZFNs generated using
context-dependent assembly, Nucleic Acids Res, 41(4):
2769-2778
Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F.,
Hummel A., Bogdanove A.J., and Voytas D.F., 2010,
Targeting DNA double-strand breaks with TAL effector
nucleases, Genetics, 186(2): 757-761
Cong L., Ran F.A., Cox D., Lin S.L., Barretto R., Habib N.,
Hsu P.D., Wu X.B., Jiang W.Y., Marraffini L.A., and
Zhang F., 2013, Multiplex genome engineering using
CRISPR/Cas systems, Science, 339(6121): 819-823
Curtin S.J., Zhang F., Sander J.D., Haun W.J., Starker C.,
Baltes N.J., Reyon D., Dahlborg E.J., Goodwin M.J.,
Coffman A.P., Dobbs D., Joung J.K., Voytas D.F., and