王有国等
, 2011,
兰科植物花色形成与变异分子机理
,
分子植物育种
Vol.9 No.80 (doi: 10.5376/mpb.cn.2011.09.0080)
1587
同时,课题组在研究中也发现,多数兰科植物
缺乏红色、蓝色和紫色。兰花缺乏红色系和紫色系
是结构基因和转录因子共同作用的结果。前人的研
究表明,瞬间表达花青素苷生物合成途径的转录因
子,能够促进兰花花色改变而产生红色
(Griesbach
and Klein, 1993; Chiou and Yeh, 2008; Ma and Pooler,
2009; Albert et al., 2010)
,而且在模式作物上的研究
也表明,超表达花青素苷转录因子不但能够改变植
物花色
(Lloyd et al., 1992)
,而且能够改变营养器官
如叶片的颜色
(Golesbrough et al., 1996; Elomaa et
al., 2003; Ray et al., 2003)
。因此,超表达花青素苷
转录因子是兰花花色育种的有效途径之一。
近年兰科植物的离体培养
(Chugh et al., 2009)
和遗传转化均取得较大进展,但依然落后于其他草
本植物,多数研究仍集中于转化体系建立
(Zhang et
al., 2010; Shrestha et al., 2007; Semiarti et al., 2010;
Sjahail and Mii, 2006)
。壳聚糖
(chitosan)
能够促进石
斛兰属原球茎
(protocorn-like body)
的增殖、芽分化
和幼苗发育
(Pornpienpakdee et al., 2010)
,而且能够
促进其种子萌发
(Kananont et al., 2010)
。最新研究发
现,蝴蝶兰原球茎在添加番茄提取物的培养基上预
培养,能够促进抗性芽的再生,转化频率高达
10%~14% (Semiarti et al., 2011)
。这些研究为兰花花
色分子育种,特别是培育红色、蓝色和紫色兰花提
供了可能。
作者贡献
王有国和张广辉完成文献检索和初稿的写
作,孙慧晶和郭红参与了论文的写作和修改。李枝
林审阅了全文。全体都阅读并同意最终的文本。
致谢
本研究工作得到云南省科技厅重点产业创新
工程项目
(
项目编号
: 2009BB013)
和云南教育厅科
学研究基金
(
项目编号
: 09Y0195)
资助。
参考文献
Albert N.W., Arathoon S., Collette V.E, Schwinn K.E., Jameson
P.E., Lewis D.H., Zhang H.B., and Davies K.M., 2010,
Activation of anthocyanin synthesis in
Cymbidium
orchids:
variability between known regulators,
Plant Cell Tissue
and Organ Culture, 100(3): 355-360
Albert N.W., Lewis D.H., Zhang H., Irving L.J., Jameson P.E.,
and Davies K.M., 2009, Light-induced vegetative
anthocyanin pigmentation in
Petunia
, J. Exp. Bot., 60(7):
2191-2202
Chen W.H., Hsu C.Y., Cheng H.Y., Chang H., Chen H.H, and
Ger M.J., 2011, Downregulation of putative UDP-glucose:
Flavonoid 3-O-glucosyltransferase gene alters flower
coloring in
Phalaenopsis
, Plant Cell Reports, 30(6):
1007-1017
Chiou C.Y., and Yeh K.W., 2008,
Differential expression of
MYB
gene (
OgMYB1
) determines color patterning in floral
tissue of
Oncidium
Gower Ramsey, Plant Mol Biol, 66(4):
379-388
Chiou C.Y., Pan H.A., Chuang Y.N., and Yeh K.W., 2010,
Differential expression of carotenoid-related genes
determines diversified carotenoid coloration in floral
tissues of
Oncidium
cultivars, Planta, 232(4): 937-48
Chugh S., Guha S., and Rao I.U., 2009, Micropropagation of
orchids: A review on the potential of different explants,
Scientia Horticulturae, 122(4): 507-520
Cominelli E., Gusmaroli G., Allegra D., Galbiati M., Wade
H.K., Jenkins G.I., and Tonelli C., 2008, Expression
analysis of anthocyanin regulatory genes in response to
different light qualities in
Arabidopsis thalian
a, J. Plant
Physiol., 165(8): 886-894
Weiss D., 2000, Regulation of flower pigmentation and growth:
multiple pathways control anthocyanin sythesis in
expanding petals, Physiol Plant, 110(2): 152-157
Davuluri G.R., van Tuinen A., Fraser P.D, Manfredonia
A.,
Newman R., Burgess D., Brummell D.A., King S.R., Palys
J., Uhliq J., Bramley P.M., Pennings H.M., and Bowler C.,
2005, Fruit-specific RNAi-mediated suppression of DET1
enhances carotenoid and flavonoid content in tomatoes,
Nat. Biotechnol, 23(7): 890-895
Dong Y.H., Beuning L., Davies K., Mitra D., Morris B., and
Kootstra A., 1998, Expression of pigmentation genes and
photo-regulation of anthocyanin biosynthesis in
developing Royal Gala apple flowers, Aust. J. Plant
Physiol, 25(2): 245-252
Elomaa P., Uimari A., Mehto M., Albert V.A., Laitien R.A.,
and Teeri T.H., 2003, Activation of anthocyanin
biosynthesis in
Gerbera hybrida
(Asteraceae) suggests
conserved
protein-protein
and
protein-promoter
interactions between the anciently diverged monocots and
eudicots, Plant Physiology, 133(4): 1831-1842
Fossen T., and Øvstedal D.O., 2003, Anthocyanins from
flowers of the orchids
Dracula chimaera
and
D. cordobae
,
Phytochemistry, 63(7): 783-787
Golesbrough A P, Tong Y., and Yoder J I., 1996,
Lc
as a
non-destructive visual reporter and transposition excision
marker gene for tomato, The Plant Journal, 9(6): 927-933
Griesbach R.J., and Klein T.M., 1993, In situ genetic