Page 19 - 2011no46

Basic HTML Version

分子植物育种
(
网络版
), 2011
,
9
,
1343
-
1350
Fenzi Zhiwu Yuzhong (Online), 2011, Vol.9, 1343
-
1350
http://mpb.
5th
.sophiapublisher.com
1343
研究报告
A Letter
SRAP
RGA
标记技术在甘薯的抗茎线虫病遗传多样性中的应用
黄文静
,
王钰
,
蒋琳
,
季必霞
,
陈达伟
安徽大学资源与环境工程学院
,
安徽大学生命科学学院
,
安徽省生态工程与生物技术重点实验室
,
合肥
, 230039
通讯作者
: wangyu@ahu.edu.cn;
作者
分子植物育种
, 2011
,
9
,
46
doi: 10.5376/mpb.cn.2011.09.0046
收稿日期:
2010
12
22
接受日期:
2011
04
07
发表日期:
2011
04
15
这是一篇采用
Creative Commons Attribution License
进行授权的开放取阅论文。只要对本原作有恰当的引用
,
版权所有人允许并同意第三方无条
件的使用与传播。
引用格式:
黄文静等
, 2011, SRAP
RGA
标记技术在甘薯的抗茎线虫病遗传多样性中的应用
,
分子植物育种
Vol.9 No.46 (doi: 10.5376/mpb.cn.2011.09.0046)
为了评价甘薯种质的抗茎线虫病遗传多样性,选用
SRAP
RGA
分子标记方法,
SRAP
RGA
引物设计如下:
利用
Blast
软件,对
Genebank
数据库中由王钰等克隆的
342
个甘薯
RGA(
编号为
DQ903322-DQ903664)
与抗线虫病基因
(
RGC1
RX
)
进行比对,筛选出与抗病基因同源性高于
50%
RGA
序列
11
个,以高抗甘薯茎线虫病品种徐
78-1
和感茎
线虫病品种徐薯
18
的基因组
DNA
为亲本,基因组
DNA
采用改良的
CTAB
法提取得到,然后将没有多态性的
RGA
结合
SRAP
组合成
SRAP-RGA
引物,筛选出五对有多态性的
SRAP-RGA
引物。将
SRAP
RGA
技术结合起来研究
50
个甘薯
品种的抗茎线虫病遗传多样性。结果显示,
5
对引物组合经过
PCR
扩增,聚丙烯酰胺凝胶电泳检测共产生
57
条带,平均
每对引物组合产生
9~13
条带,其中多态性条带
49
条,占总条带数的
85.96%
。其中多态率最高的引物对是
EM4-S2-A07-F
100%
。最低的引物对是
EM8-S1-F03-F
,为
63.6%
。根据
SRAP-RGA
标记结果,应用
UPGMA
法,采用
NTSYS-pc
件对
50
个甘薯种质进行聚类分析,它们之间的相似系数范围在
0.2~0.8
之间。
UPGMA
聚类分析显示,在相似系数为
0.58
50
份甘薯品种被划分为
3
大类群。这说明
SRAP
RGA
标记技术可有效用于甘薯的抗病遗传多样性研究,并为杂交
亲本的选择提供理论依据。
关键词
甘薯
; SRAP; RGA;
聚类分析
;
遗传多样性
Analysis of Genetic Diversity of Sweetpotato Stem Nematode Disease Resistance
by SRAP and RGAMarkers
Huang Wenjing , Wang Yu , Jiang Lin , Ji Bixia , Chen Dawei
College of Resources and Environmental Engineering, College of Life Science Anhui University, Hefei, 230039, P.R. China
Corresponding author, wangyu@ahu.edu.cn;
Authors
Abstract
To evaluate the genetic diversity of stem nematode disease resistance of sweetpotato, SRAP and RGA markers are used,
SRAP and RGA primers are designed as follows, RGA primer sequences were designed from the 342 sweetpotato RGAs
(No.DQ903322-DQ903664) in Genebank database which were cloned by Wang Yu and Dr. He. We used the Blast software to
compare with stem nematodes disease resistant gene (
RGC1
RX
) and 11 RGA primer sequences were selected whose homologue
were more than 50% with the resistant genes. Then Xu18 which is sensitive to stem nematode disease and X781 which is highly
resistance to the disease were used as parents. All genomic DNA are extracted according to the modified CTAB method. Then
SRAP-RGA primer combinations were formed through RGA without polymorphism and SRAP primers which were designed
according to Li and Quiros. Genetic diversity of stem nematode disease resistance of 50 sweetpotato cultivars were studied with 5
highly polymorphic and stable primer pairs selected by SRAP and RGA markers. The results show 57 bands were generated through
5 polymorphic primer combinations. Each primer combination generated 9~13 bands, and 49 polymorphic bands were detected by
PCR amplification and polyacrylamide gel electrophoresis, accounting for 85.96% of the total bands detected. The highest
polymorphic rate of EM4-S2-A07-F primer combination is 100%. The lowest rate of EM8-S1-F03-F primer is 63.6%. According to
the result of SRAP-RGA markers
50 sweetpotato cultivars were cluster analyzed by UPGMA and NTSYS-pc software. The
similarity coefficient of the 50 cultivars was 0.2~0.8.These germplasms were divided into three groups based on the similarity level
of 0.58. It appears that SRAP and RGA markers can be used for study of genetic diversity of sweetpotato stem nematode disease
resistance. The results of this study may offer a better reference for the selection of hybridization parents.
Keywords
Sweetpotato; SRAP; RGA; Cluster analysis; Genetic diversity