Cancer Genetics and Epigenetics 2015, Vol.3, No.12, 1-7
6
Figure 6 The gene stands for the significantly DEGs, the
miRNA stands for the miRNAs correlated with genes.
associated with cell differentiation, propagation and
apoptosis.
At present, the therapeutic method is mainly focused
on medicine and the medicine is dopamine agonist.
However it may lead to many side-effects. And the
operation can influence the function of visual system
and hypothalamo-hypophyseal system. Therefore it is
very important to identify tumor-related biomarkers
for the treatment of prolactinoma.
Acknowledgments
This work was supported by the Ministry of Eduction
of the People’s Republic of China (grants
20122307120034), and The Science Innovation
Project (grants 2015003).
References
Aranda B., Achuthan P., Alam-Faruque Y., Armean I., Bridge A., Derow C.,
Feuermann M., Ghanbarian A.T., Kerrien S., Khadake J., Kerssemakers
J., Leroy C., Menden M., Michaut M., Montecchi-Palazzi L.,
Neuhauser S.N., Orchard S., Perreau V., Roechert B., Van Eijk K., and
Hermjakob H., 2010, The IntAct molecular interaction database in
2010, Nucleic Acids Res, 38: D525-531
Asa S.L., and Ezzat S., 1998, The cytogenesis and pathogenesis of pituitary
adenomas, Endocr Rev, 19: 798-827
Bertelloni S., and Mul D., 2008, Treatment of central precocious puberty by
GnRH analogs: long-term outcome in men, Asian J Androl, 10:
525-534
Beuming T., Skrabanek L., Niv M.Y., Mukherjee P., and Weinstein H., 2005,
PDZBase: a protein-protein interaction database for PDZ-domains,
Bioinformatics, 21: 827-828
Canturk K.M., Ozdemir M., Can C., Oner S., Emre R., Aslan H., Cilingir O.,
Ciftci E., Celayir F.M., Aldemir O., Ozen M., and Artan S., 2014,
Investigation of key miRNAs and target genes in bladder cancer using
miRNA profiling and bioinformatic tools, Mol Biol Rep,
Chen C.Z., Li L., Lodish H.F., and Bartel D.P., 2004, MicroRNAs modulate
hematopoietic lineage differentiation, Science, 303: 83-86
Comprehensive molecular characterization of human colon and rectal cancer,
2012, Nature, 487: 330-337
Decker E., Stellzig-Eisenhauer A., Fiebig B.S., Rau C., Kress W., Saar K.,
Ruschendorf F., Hubner N., Grimm T., and Weber B.H., 2008, PTHR1
loss-of-function mutations in familial, nonsyndromic primary failure of
tooth eruption, Am J Hum Genet, 83: 781-786
Elston M.S., Gill A.J., Conaglen J.V., Clarkson A., Shaw J.M., Law A.J.,
Cook R.J., Little N.S., Clifton-Bligh R.J., Robinson B.G., and
Mcdonald K.L., 2008, Wnt pathway inhibitors are strongly
down-regulated in pituitary tumors, Endocrinology, 149: 1235-1242
Evans C.O., Reddy P., Brat D.J., O'neill E.B., Craige B., Stevens V.L., and
Oyesiku N.M., 2003, Differential expression of folate receptor in
pituitary adenomas, Cancer Res, 63: 4218-4224
Frimberger D., and Gearhart J.P., 2005, Ambiguous genitalia and intersex,
Urol Int, 75: 291-297
Guo L., Sun B., Sang F., Wang W., and Lu Z., 2009, Haplotype distribution
and evolutionary pattern of miR-17 and miR-124 families based on
population analysis, PLoS One, 4: e7944
Guo Z., Zhao C., and Wang Z., 2014, Gene expression profiles analysis
identifies key genes for acute lung injury in patients with sepsis, Diagn
Pathol, 9: 176
Huang L., Wong C.C., Cheng K.W., and Rigas B., 2014, Phospho-Aspirin-2
(MDC-22) Inhibits Estrogen Receptor Positive Breast Cancer Growth
Both In Vitro and In Vivo by a Redox-Dependent Effect, PLoS One, 9:
e111720
Isserlin R., El-Badrawi R.A., and Bader G.D., 2011, The Biomolecular
Interaction Network Database in PSI-MI 2.5, Database (Oxford), 2011:
baq037
Kasum M., 2010, New insights in mechanisms for development of ovarian
hyperstimulation syndrome, Coll Antropol, 34: 1139-1143
Li J., and Tibshirani R., 2013, Finding consistent patterns: a nonparametric
approach for identifying differential expression in RNA-Seq data, Stat
Methods Med Res, 22: 519-536
Licata L., Briganti L., Peluso D., Perfetto L., Iannuccelli M., Galeota E.,
Sacco F., Palma A., Nardozza A.P., Santonico E., Castagnoli L., and
Cesareni G., 2012, MINT, the molecular interaction database: 2012
update, Nucleic Acids Res, 40: D857-861
Okuda S., Yamada T., Hamajima M., Itoh M., Katayama T., Bork P., Goto S.,
and Kanehisa M., 2008, KEGG Atlas mapping for global analysis of
metabolic pathways, Nucleic Acids Res, 36: W423-426
Pagel P., Kovac S., Oesterheld M., Brauner B., Dunger-Kaltenbach I.,
Frishman G., Montrone C., Mark P., Stumpflen V., Mewes H.W., Ruepp
A., and Frishman D., 2005, The MIPS mammalian protein-protein
interaction database, Bioinformatics, 21: 832-834
Peri S., Navarro J.D., Amanchy R., Kristiansen T.Z., Jonnalagadda C.K.,
Surendranath V., Niranjan V., Muthusamy B., Gandhi T.K., Gronborg
M., Ibarrola N., Deshpande N., Shanker K., Shivashankar H.N.,
Rashmi B.P., Ramya M.A., Zhao Z., Chandrika K.N., Padma N.,
Harsha H.C., Yatish A.J., Kavitha M.P., Menezes M., Choudhury D.R.,
Suresh S., Ghosh N., Saravana R., Chandran S., Krishna S., Joy M.,
Anand S.K., Madavan V., Joseph A., Wong G.W., Schiemann W.P.,
Constantinescu S.N., Huang L., Khosravi-Far R., Steen H., Tewari M.,
Ghaffari S., Blobe G.C., Dang C.V., Garcia J.G., Pevsner J., Jensen
O.N., Roepstorff P., Deshpande K.S., Chinnaiyan A.M., Hamosh A.,
Chakravarti A., and Pandey A., 2003, Development of human protein
reference database as an initial platform for approaching systems