Bt Research 2015, Vol.6, No.5, 1-10
10
Pinto L.M.N., 2010, Aplicação de proteínas Cry de
Bacillus thuringiensis
com potencial no manejo de insetos-praga da cultura do arroz irrigado
no Rio Grande do Sul, Tese (Doutorado em Biologia), Universidade do
Vale do Rio dos Sinos, São Leopoldo, RS, Brasil, 115p.
Poitout S., and Bues R., 1974, Élevage des chenilles de vint huit espèces de
lépidoptères Noctuidae et deux espèces d’Arctiidae sur milieu artificiel
simple. Particularités de l’élevage selon les espèces, Annales de zoologie,
ecologie animale, 6: 431-441
Polanczyk R.A., 2000, Effectiveness of
Bacillus thuringiensis
strains against
Spodoptera frugiperda
(lepidoptera: noctuidae), Brazilian Journal of
Microbiology, 31:165-167
Prutz G., and Dettner K., 2004, Effect of Bt corn leaf suspension on food
consumption by
Chilo partellus
and life history parameters of its
parasitoid
Cotesia flavipes
under laboratory conditions, Entomol Exp
Appl, 111:179-186
Ramirez-Romero R.et al., 2007, Impact assessment of
Bt
-maize on a moth
parasitoid,
Cotesia marginiventris
(Hymenoptera: Braconidae), via host
exposure to purified Cry1Ab protein or
Bt
-plants
,
Crop Prot, 26:953-962
Rasmann S., and Turlings T.C.J., 2008, First insights into specificity of
belowground tritrophic interactions, Oikos, 117: 362-369
Ridgway R.L., and Wilson D.D., 1975, Morphology, development, and
behavior of the immature stages of the parasitoid,
Campoletis sonorensis
(Hymenoptera: Ichneumonidae), Ann Entomol Soc Am, 68:191-196
Romeis J.et al., 2008, Integration of insect-resistant genetically modified
crops within IPM programs, Dordrecht, Springer, 441 pp.
Salama H. S. et al., 1983, Chemical changes in the haemolymph of
Spodoptera littoralis
(Lepidoptera: Noctuidae) as affected by
Bacillus
thuringiensis
., Entomophaga, 28:331-337
Sanders C. J, et al., 2007, Host-plant mediated eVects of transgenic maize on
the insect parasitoid
Campoletis sonorensis
(Hymenoptera: Ichneumonidae).
Biological Control, 40: 362-369
Sharma C.H. et al., 2008, Effects of
Bacillus thuringiensis
-endotoxin-fed
Helicoverpa armigera
on the survival and development of the parasitoid
Campoletis chlorideae
, Entomologia Experimentalis et Applicata, 126: 1-8
Shelton A.M. et al., 2002, Economic, ecological, food safety, and social
consequences of the deployment of Bt transgenic plants., Annual
Review of Entomology, 47: 845-88
Shikano I., and Cory J.S., 2014a, Genetic resistance to
Bacillus thuringiensis
alters feeding behavior in the cabbage looper,
Trichoplusia ni
, PLoSONE,
9: e85-709
Schuler T. H., 2004, Effects of
Bt
plants on the development and survival of
the parasitoid
Cotesia plutellae
(Hymenoptera: Braconidae) in
susceptible and
Bt
-resistant larvae of the diamondback moth,
Plutella
xylostella
(Lepidoptera: Plutellidae), Journal of Insect Physiology, 50:
435-443
Tabashnik B.E. et al., 2013, Insect resistance to Bt crops: lessons from the
first billion acres. Nature Biotechnology, 31: 510-521
Tian J. C., 2013, Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not
harm the green lacewing,
Chrysoperla rufilabris
, PloS one, 8: 60-125
Vinson S.B., 1990, Potential impact of microbial insecticides on beneficial
arthropods in the terrestrial environment, Safety of Microbial Insecticides,
Vol. 5
Wolfenbarger L.L., 2008, Bt crops effects on functional guilds of non-target
arthropods: a meta-analysis, PLoS ONE, Vol. 3
Yazlovetzky I.G., 2001, Features of the nutrition of Chrysoperla larvae and
larval artificial diets., Lacewings in the crop environment, Vol. 320-337