Bt Research 2015, Vol.6, No.5, 1-10
9
4 Conclusions
The treatments T4 (
Bt
proteins and
C. flavicincta
)
were more effective in controlling
S. frugiperda
, thus
indicating a potential of proteins Cry and
C. flavicincta
to be used in the control of pest an integrated pest
management system. The offspring of the parasitoids
that developed in larvae treated with
Bt thuringiensis
4412 exhibited altered biological characteristic when
compares to the control. These effects were largely
indirect, related to the sensitivity of lepidopteran
larvae to
B. thuringiensis.
. However, the existence of
direct effects cannot be excluded.
Authors'Contributions:
LP oversaw the development of bioassays and insect rearing,
helped in the analysis of results and preparation of the
manuscript. FP produced some bioassays and helped in the
creation of insects.VM helped the statistical analysis and
drafting of the manuscript, LF oversaw the development of the
tests, helped in data analysis and preparation of the manuscript.
Acknowledgements:
We thank the researcher Jaime Vargas de Oliveira, from the
Rice Experimental Station (IRGA). We also thank the researcher
Ivan Cruz, from Embrapa Maize and Sorghum, for providing
the parasitoid pupae of
Campoletis flavicincta
used in this work.
We thank Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) for granting a doctoral scholarship to the
senior author.
References
Ahmad S. et al., 1978, Toxicity of
Bacillus thuringiensis
to gypsy moth
larvae parasitized by
Apanteles melanoscelus,
Environ Entomology, 7:
73-76
Alves S. B., Moino J.R.A., Almeida J. E. M., 1998, Desenvolvimento,
potencial de uso e comercialização de produtos microbianos. In: Alves,
S. B. (ed). Controle microbiano de insetos. FEALQ, São Paulo, p:
1143-1163
Baur M. et al., 2003, Effect of Bt-cotton expressing Cry1A(c) on the
survival and fecundity of two hymenopteran parasitoids (Braconidae:
Encyrtidae) in the laboratory, Biology Control, 26: 325-332
Barjac D.E.H., and Lecadet M.M., 1976, Dosage biochimique d’exotoxine
thermostable the
Bacillus thuringiensis
d’après l’inhibition d’ARN-
polymerases bacteriennes, Academy of Sciences, 282: 2119-2122
Berti F.E., and Ciociola A.I., 2002, Parasitoides ou predadores? Vantagens e
desvantagens, Controle biológico no Brasil: parasitóides e predadores,
3: 29-41
Bruck D.J., 2010, Fungal entomopathogens in the rhizosphere, Biology
Control, 55: 103-112
Carvalho R.A et al., 2013, Investigating the molecular mechanisms of
organosphate and pyrethroid resistance in the fall armyworm
Spodoptera
frugiperda
, Plos One, e8: 62-268
Chen M. Z., 2008, Impact of single-gene and dual-gene
Bt
broccoli on the
herbivore
Pieris rapae
(Lepidoptera: Pieridae) and its pupal endoparasitoid
Pteromalus puparum
(Hymenoptera: Pteromalidae), Transgenic Research,
17: 545-555
Cohen M.B et al., 2008, Bt rice in Asia: potential benefits, impact, and
sustainability, Springer, Dordrecht, Vol:223-248
Cruz I.A et al., 1995, Aspectos biológicos do parasitóide
Campoletis
flavicincta
(Ashmead) criados em lagartas de
Spodoptera frugiperda
(Smith), Anais da Sociedade Entomológica do Brasil, 24: 201-208
Dequech S.T.B et al., 2005, Interação Entre
Spodoptera frugiperda
(J.E.
Smith) (Lepidoptera: Noctuidae),
Campoletis flavicincta
(Ashmead)
(Hymenoptera: Ichneumonidae) e
Bacillus thuringiensis aizawai
em
Laboratório, Neotropical Entomology, 34: 937-944
Desneus N., Bernal J.S., 2010, Genetically modified crops deserve greater
ecotoxicological scrutiny, Ecotoxicology, 19:1642-1644
Dhillon K.M., and Sharma C.H.,
2010, Chickpea-mediated effects of
Bacillus thuringiensis
on
Helicoverpa armigera
and its larval parasitoid,
Campoletis chlorideae,
J. Appl. Entomol, 134: 682-693
Flexner J.L. et al., 1986, The effects of microbial pesticides on non-target,
beneficial arthropods., Agriculture, Ecosysterms and Environment,16:
203-254
Godfray H.C.J, 1994, Parasitoids: Behavioural and Evolutionary Ecology.,
Princetown University Press, Princetown, Vol: 7
Gould F. et al., 1998, Effects of natural enemies on the rate of herbivore
adaptation to resistant host plants, Entomology Exp Appl, 58: 1-14
Höfte H., and Whiteley, H. R., 1978, Insecticidal crystal proteins of
Bacillus
thuringiensis
, Microbiology Rev, 53:242-255
Huang F. et al., 2012, Success of the high-dose/refuge resistance management
strategy after 15 years of Bt crop use in North America, Entomology
Exp Appl, 140:1-16
James C., 2014, Global Status of Commercialized Biotech/GM Crops, ISA
BRIEFN, Vol: 46
Johnson M.T., and Gould F., 1992, Interaction of genetically engineered
host plant resistance and natural enemies of
Heliothis virescens
(Lepidoptera: Noctuidae) in tobacco, Environ. Entomol, 21:586-597
Kumar R. et al., 2014, Effects of Bt Cotton on
Thrips tabaci
(Thysanoptera:
Thripidae) and Its Predator,
Orius insidiosus
(Hemiptera: Anthocoridae),
Journal of Economic Entomology, 107:927-932
Liu X. et al., 2014, Natural Enemies Delay Insect Resistance to Bt Crops,
PloS one,
9
: 90-366
Lundgren J.G. et al., 2009, Ecological compatibiliy of GM crops and
biological control, Crop Protection, 28: 1017-1030
Martins J.F. et al., 2004, Descrição e manejo integrado de insetos-praga
em arroz irrigado, Embrapa Informação Tecnológica, Vol. 1
Meissle M. et al., 2004, Implications for the parasitoid
Campoletis sonorensis
(Hymenoptera: Ichneumonidae) when developing in
Bt
maize-fed
Spodoptera littoralis
larvae (Lepidoptera: Noctuidae), IOBC/WPRS
Bulletin., 27: 117-123
Mendes M. et al., 2011, Respostas da lagarta-do-cartucho a milho geneticamente
modificado expressando a toxina Cry1A(b), Pesquisa Agropecuária Brasileira,
46: 239-244
Onstad DW., 2008, The future of insect resistance management. In: Onstad
DW, editor. Insect resistance management: biology, economics and
prediction. London, Academic Press, pp. 289-300
Onstad D. et al., 2013, Modeling the integration of parasitism, insecticide
and transgenic insecticidal crops for the long-term control of an insect
pest, J Econ Entomol, 106:1103-1111