Page 11 - Molecular Plant Breeding

Basic HTML Version

Molecular Plant Breeding 2012, Vol.3, No.1, 1
-
10
http://mpb.sophiapublisher.com
8
Cheng Z.K., Gu M.H., Jiang J.M., Li J.Y., Hong G.F., Xue Y.B., and
Han B., 2002, Sequence and analysis of rice chromosome 4, Nature,
420: 316-320 http://dx.doi.org/10.1038/nature01183 PMid:12447439
Fleury D., Jefferies S., Kuchel H., and Langridge P., 2010, Genetic and
genomic tools to improve drought tolerance in wheat, Journal of
Experimental Botany, 61(12): 3211-3222 http://dx.doi.org/10.1093/jxb/
erq152 PMid:20525798
Fukai S., and Cooper M., 1995, Development of drought-resistant cultivars
using physiomorphological traits in rice, Field Crops Research, 40(2):
67-86 http://dx.doi.org/10.1016/0378-4290(94)00096-U
Gao T., Wu Y.Y., Zhang Y.Y., Liu L.J., Ning Y.S., Wang D.J., Tong H.N.,
Chen S.Y., Chu C.C., and Xie Q., 2011, OsSDIR1 overexpression
greatly improves drought tolerance in transgenic rice, Plant Mol. Biol.,
76(1-2): 145-156 http://dx.doi.org/10.1007/s11103-011-9775-z PMid:21499841
Garg A.K., Kim J.K., Owens T.G., Ranwala A.P., Choi Y.D., Kochian L.V.,
and Wu R.J., 2002, Trehalose accumulation in rice plants confers high
tolerance levels to different abiotic stresses, PNAS, 99(25):
15898-15903 http://dx.doi.org/10.1073/pnas.252637799 PMid:12456878
PMCid:138536
Goff S.A., Ricke D., Lan T.H., Presting G., Wang R.L., Dunn M.,
Glazebrook J., Sessions A., Oeller P., Varma H., Hadley D., Hutchison
D., Lange M., Moughamer T., Xia Y., Budworth P., Zhong J.P., Miguel
T., Paszkowski U., Zhang S.P., Colert m., Sun W.L., Chen L.L., Cooper
B., Park S., Wood T.C., Mao L., Quai P., Wing R., Dean R., Yu Y.,
Zharkikh A., Shen R., Sahasrabudhe S., Thomas A., Cannings R., Gutin
A., Pruss D., Reid J., Tavtigian S., Mitchell J., Eldredge G., Scholl T.,
Miller R.M., Bhatnagar S., Adey N., Rubano T., Tusneem N., Robinson
R., Reldhaus J., Macalma T., Oliphant A., and Briggs S., 2002, A draft
sequence of the rice Genome (
Oryza sativa
L. ssp.
japonica
), Science,
296(5565): 92-100 http://dx.doi.org/10.1126/science.1068275 PMid:11935018
Gomez S.M., Boopathi M.N., Kuman S.S., Ramasubramanian T., Zhu C.S.,
Jeyaprakash P., Senthil A. and Babu C.R., 2010, Molecular mapping and
location of QTLs for drought-resistance traits in
indica
rice (
Oryza sativa
L.) lines adapted to target environments, Acta Physiologiae Plantarum,
32(2): 355-364 http://dx.doi.org/10.1007/s11738-009-0413-1
Gomez S.M., Kumar S.S., Jeyaprakash P., Suresh R., Biji K.R., Boopathi
N.M., Price A.H., and Babu R.C., 2007, Mapping QTLs linked to
physio-morphological and plant production traits under drought stress
in rice (
Oryza sativa
L.) in the target environment, Amer. J. Biochem.
Biotech., 2(4): 161-169
Gorantla M., Babu P.R., Lachagari V.B.R., Feltus F.A., Paterson A.H., and
Reddy A.R., 2005, Functional genomics of drought stress response in
rice: Transcript mapping of annotated unigenes of an indica rice (
Oryza
sativa
L. cv. Nagina 22), Curr. Sci., 89 (3): 496-514
Gosal S.S., Wani S.H., and Kang M.S., 2009, Biotechnology and drought
tolerance, Journal of Crop Improvement, 23(1): 19-54 http://dx.doi.org/
10.1080/15427520802418251
Gowda V.R.P., Henry A., Yamauchic A., Shashidhar H.E., and Serraj R.,
2011, Root biology and genetic improvement for drought avoidance in
rice, Field Crops Research, 122(1): 1-13 http://dx.doi.org/10.1016/
j.fcr.2011.03.001
Gu J.F., Yin X.Y., Struik P.C., Stomph T.J., and Wang H.Q., 2012, Using
chromosome introgression lines to map quantitative trait loci for
photosynthesis parameters in rice (
Oryza sativa
L.) leaves under
drought and well-watered field conditions, Journal of Experimental
Botany, 63(1): 455-469 http://dx.doi.org/10.1093/jxb/err292 PMid:21984650
PMCid:3245479
Hu H.H., Dai M.Q., Yao J.Y., Xiao B.Z., Li X.H., Zhang Q.F., and Xiong L.Z.,
2006, Overexpressing a NAM, ATAF, and CUC (NAC) transcription
factor enhances drought resistance and salt tolerance in rice, PNAS,
103(35): 12987-12992 http://dx.doi.org/10.1073/pnas.0604882103
PMid:16924117 PMCid:1559740
Hussain S.S., Iqbal M.T., Arif M.A., and Amjad M., 2011, Beyond
osmolytes and transcription factors: drought tolerance in plants
via
protective proteins and aquaporins, Biologia Plantarum, 55(3): 401-413
http://dx.doi.org/10.1007/s10535-011-0104-9
Ingram J., and Bartels D., 1996, The molecular basis of dehydration tolerance
in plants. Annual review of Plant Physiology, Plant Molecular Biology,
47: 377-403 http://dx.doi.org/10.1146/annurev.arplant.47.1.377
PMid:15012294
Jang I.C., Oh S.J., Seo J.S., Choi W.B., Song S.I., Kim C.H., Kim Y.S., Seo
H.S., Choi Y.D., Nahm B.H., and Kim J.K., 2003, Expression of a
bifunctional fusion of the Escherichia coli genes for
trehalose-6-phosphate synthase and trehalose-6- phosphate phosphatase in
transgenic rice plants increases trehalose accumulation and abiotic stress
tolerance without stunting growth, Plant Physiology, 131(2): 516-24
http://dx.doi.org/10.1104/pp.007237 PMid:12586876 PMCid:166828
Jiang Y.H., Cai Z.X., Xie W.B., Long T., Yu H.H., and Zhang Q.F., Rice
functional genomics research: Progress and implications for crop
genetic improvement, Biotechnology Advances, in press
Jonaliza L.C., Pantuwan G., Jongdee B., and Toojinda T., 2004, Quantitative
Trait Loci associated with drought tolerance at reproductive stage in
rice, Plant Physiology, 135(1): 384-399 http://dx.doi.org/10.1104/pp.103.035527
PMid:15122029 PMCid:429392
Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., and Shinozaki K., 1999,
Improving plant drought, salt and freezing tolerance by gene transfer of a
single stress-inducible transcription factor, Nature Biotechnology, 17:
287-291 http://dx.doi.org/10.1038/7036 PMid:10096298
Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K.,
Galbraith D., and Bohnert H.J., 2001, Gene expression profiles during
the initial phase of salt stress in rice, Plant Cell, 13(4): 889-906
http://dx.doi.org/10.1105/tpc.13.4.889
http://dx.doi.org/10.2307/3871347 PMid:11283343 PMCid:135538
Khan M.S., 2011, The role of DREB transcription factors in abiotic stress
tolerance of plants, Biotechnology and Biotechnology Equipment,
25(3): 2433-2442 http://dx.doi.org/10.5504/bbeq.2011.0072
Komatsu S., and Tanaka N., 2005, Rice proteome analysis: a step toward
functional analysis of the rice genome, Proteomics, 5(4): 938-949
http://dx.doi.org/10.1002/pmic.200401040 PMid:15627974
Lafitte H.R., Guan Y.S., Yan S., and Li Z.K., 2007, Whole plant responses,
key processes, and adaptation to drought stress: the case of rice, J.
Exper. Bot., 58(2): 169-175 http://dx.doi.org/10.1093/jxb/erl101 PMid:16997901
Lafitte H.R., Ismail A., and Bennet J., 2004, Abiotic stress tolerance in rice
for Asia: progress and the future, In: Fischer T., Turner N., Angus J.,
McIntyre L., Robertson M., Borrell A., and Lloyd D.(eds.), New
directions for a diverse planet: proceedings of the 4th international crop
science congress, 26 Sep-1 Oct, Brisbane, Australia
Lafitte H.R., Price A.H., and Courtois B., 2004, Yield response to water
deficit in an upland rice mapping population: associations among traits
and genetic markers, TAG, 109(6): 1237-1246 http://dx.doi.org/10.1007/
s00122-004-1731-8 PMid:15490102
Langridge P., Patridge N., and Fincher G., 2006, Funtional genomics of
abiotic stress tolerance in cereals, Briefings in Functional Genomics
and Proteomics, 4(4): 343-354 http://dx.doi.org/10.1093/bfgp/eli005
PMid:17202125