Page 10 - Molecular Plant Breeding

Basic HTML Version

Molecular Plant Breeding 2012, Vol.3, No.1, 1
-
10
http://mpb.sophiapublisher.com
7
underlying mechanisms of drought tolerance. The
future contribution of genomics will depend on our
ability to map QTLs and their effective incorporation
in to marker assisted breeding programs. With its far
reaching implications, transgenic approach will have
its role in future as far as engineering drought tolerant
genes is concerned. However this approach can be
used to its full potential only when the transgenic
plants are tested in field conditions. This will allow us
to evaluate the impact of introduced genes under stress
conditions. Functional genomics also hold a tremendous
promise for the future. Yet many efforts are still
needed to further develop these approaches for
making them readily usable by the rice breeders. On a
more realistic note an interdisciplinary and comprehensive
breeding strategy is what required for successful
exploitation of genomics to drought prone environments.
Authors’ Contribution
MAK planned and conducted experiments, analyzed the data
and wrote the the manuscript. The author has read and
approved the final manuscript.
References
Ali G.M., and Komatsu S., 2006, Proteomic analysis of rice leaf sheath
during drought stress, J. Proteome Res., 5(2): 396-403 http://dx.doi.org/
10.1021/pr050291g PMid:16457606
Ansuman R., Rushton P.J., and Rohila J.S., 2011, The potential of
proteomics technologies for crop improvement under drought
conditions, Critical Reviews in Plant Sciences, 30(5): 471-490
http://dx.doi.org/10.1080/07352689.2011.605743
Ashley J., 1993, Drought and crop adaptation, In: Rowland J.R.J. (ed.),
Dryland farming in Africa, Macmillan Press Ltd., UK, pp.46-67
Ashraf M., 2010, Inducing drought tolerance in plants: recent advances,
Biotechnology Advances, 28(1): 169-183 http://dx.doi.org/10.1016/j.
biotechadv.2009.11.005 PMid:19914371
Babu R.C., Nguyen B.D., Chamarerk V., Shanmugasundaram P., Chezhian
P., Jeyaprakash P., Ganesh S.K., Palchamy A., Sadasivam S., Sarkarung
S., Wade L.J., and Nguyen H.T., 2003, Genetic analysis of drought
resistance in rice by molecular markers: association between secondary
traits and field performance, Crop Sci., 43: 1457-1469 http://dx.doi.org/
10.2135/cropsci2003.1457
Babu R.C., Zhang J.X., Blum A., Ho T.-H.D., Wu R., and Nguyen H.T.,
2004, HVA1, a LEA gene from barley confers dehydration tolerance in
transgenic rice (
Oryza sativa
L.) via cell membrane protection, Plant
Sci., 166(4): 855-862 http://dx.doi.org/10.1016/j.plantsci.2003.11.023
Basnayake J., Fukai S., and Ouk M., 2006, Contribution of potential yield,
drought tolerance and escape to adaptation of 15 rice varieties in
rainfed lowlands in Cambodia, In: Tuner N., and Acuna T.(eds.),
Proceedings of the 13th Australian agronomy conference, Australian
Society of Agronomy, 10-14, September, Perth, Western Australia
Bernier J., Kumar A., Ramaiah V., Spaner D., and Atlin G., 2007, A
large-effect QTL for grain yield under reproductive-stage drought
stress in upland rice, Crop Sci., 47: 507-518 http://dx.doi.org/10.2135/
cropsci2006.07.0495
Bihani P., Char B., and Bhargava S., 2011, Transgenic expression of
sorghum
DREB2
in rice improves tolerance and yield under water
limitation, Journal of Agricultural Science, 149(1): 95-101 http://dx.doi.org/
10.1017/S0021859610000742
Blum A., 2005, Drought resistance, water use efficiency and yield
potential-are they compatible, dissonant, or mutually exclusive?
Australian J. Agri. Res., 56(11): 1159-1168 http://dx.doi.org/10.1071/
AR05069
Boopathi N.M., Senthil A., Chandirakala A., Singh A., Shanmugasundaram
S., Sadasivam S., and Babu C., 2002, Mapping quantitative trait loci
and marker assisted selection for improvement of drought tolerance in
rice, Madras Agric. J., 89: 553-562
Cattivelli L., Rizza F., Badeck F.W., Mazzucotelli E., Mastrangelo A.M.,
Francia E., Mare C., Tondelli A., and Stanca A.M., 2008, Drought
tolerance improvement in crop plants: An integrative view from
breeding to genomics, Field Crop Res., 105(1-2): 1-14 http://dx.doi.org/
10.1016/j.fcr.2007.07.004
Cheng Z.Q., Targolli J., Huang X.Q., and Wu R., 2002, Wheat LEA genes,
PMA80 and PMA1959, enhance dehydration tolerance of transgenic
rice (
Oryza sativa
L.), Mol. Breed., 10(1-2): 71-82 http://dx.doi.org/
10.1023/A:1020329401191
Courtois B., McLaren G., Sinha P.K., Prasad K., Yadav R., and Shen L.,
2000, Mapping QTLs associated with drought avoidance in upland rice,
Mol. Breed., 6(1): 55-66 http://dx.doi.org/10.1023/A:1009652326121
Courtois B., Shen L., Petalcorin W., Carandang S., Mauleon R., and Li Z.,
2003, Locating QTLs controlling constitutive root traits in the rice
population IAC 165×Co39, Euphytica, 134(3): 335-345 http://dx.doi.org/
10.1023/B:EUPH.0000004987.88718.d6
Cui M., Zhang W.J., Zhang Q., Xu Z.Q., Zhu Z.G., Duan F.P., and Wu R.,
2011, Induced over-expression of the transcription factor OsDREB2A
improves drought tolerance in rice, Plant Physiology and Biochemistry,
49(12): 1384-1391 http://dx.doi.org/10.1016/j.plaphy.2011.09.012
PMid:22078375
Datta S.K., 2004, Rice biotechnology: a need for developing countries,
AgBioForum, 7(1-2): 31-35
Doebley J.F., Gaut B.S., and Smith B.D., 2006, The molecular genetics of
crop domestication, Cell, 127: 1309-1321 http://dx.doi.org/10.1016/j.cell.
2006.12.006 PMid:17190597
Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki
M., Shinozaki K., and Yamaguchi-Shinozaki K., 2003, OsDREB genes
in rice,
Oryza sativa
L., encode transcription activators that function in
drought-, high-salt- and cold-responsive gene expression, Plant J.,
33(1): 751-763 http://dx.doi.org/10.1046/j.1365-313X.2003.01661.x
PMid:12609047
Farooq M., Wahid A., Lee D.J., Ito O., and Siddique K.H.M., 2009, Advances
in Drought Resistance of Rice, Critical Reviews in Plant Sciences, 28(4):
199-217 http://dx.doi.org/10.1080/07352680902952173
Feng Q., Zhang Y.J., Hao P., Wang S.Y., Fu G., Huang Y.C., Li Y., Zhu J.J.,
Liu Y.L., Hu X., Jia P.X., Zhang Y., Zhao Q., Ying K., Yu S.L., Tang
Y.S., Weng Q.J., Zhang L., Lu Y., Mu J., Lu Y.Q., Zhang L.S., Yu Z.,
Fan D.L., Liu X.H., Lu T.T., Li C., Wu Y.R., Sun T.G., Lei H.Y., Li T.,
Hu H., Guan J.P., Wu M., Zhang R.Q., Zhou B., Chen Z.H., Chen L.,
Jin Z.Q., Wang R., Yin H.F., Cai Z., Ren S.X., Lv G., Gu W.Y., Zhu
G.F., Tu Y.F., Jia J., Zhang Y., Chen J., Kang H., Chen X.Y., Shao C.Y.,
Sun Y., Hu Q.P., Zhang X.L., Zhang W., Wang L.J., Ding C.W., Sheng
H.H., Gu J.L., Chen S.T., Ni L., Zhu F.H., Chen W., Lan L.F., Lai Y.,