IJMS-2015v5n29 - page 11

International Journal of Marine Science 2015, Vol.5, No.29, 1-7
6
Table 2 Thermodynamic functions for adsorption of
Cu
(II)
, Pb
(II) ions
ion
Co
(mg/l)
K
- ΔG
ΔH
ΔS
Temperature
283
298
310.5
323
283
298
310.5
323
Cu(II)
10
76.51
115.27
135.98
231.55
9.87
11.44
12.75
19.84
14.07
0.10
20
56.80
79.64
134.13
201.02
9.24
11.03
12.52
24.43
14.01
0.12
30
12.00
29.12
81.19
142.54
5.48
8.33
10.70
48.29
13.08
0.19
40
4.40
6.22
22.68
56.55
2.77
5.58
7.91
50.14
10.25
0.18
50
1.86
2.22
4.04
4.07
1.12
2.06
2.85
16.71
3.64
0.06
Pb(II)
50
18.44
37.91
57.34
115.82
6.58
8.73
10.51
33.88
12.30
0.14
100
11.96
14.55
20.21
28.17
5.44
6.59
7.56
16.34
8.52
0.07
200
4.01
5.96
10.11
21.22
2.84
4.64
6.14
31.11
7.64
0.12
300
2.25
2.70
3.57
5.14
1.50
2.40
3.15
15.48
3.90
0.06
400
1.18
1.38
1.511
1.85
0.40
0.80
1.06
8.07
1.65
0.03
isotherm model. The maximum percentage removal of
68.96% and 97.43% for Cu(II) and Pb(II) occurred at
pH 6.5 and 25
°
C. It can be concluded that porcellanite
powder is a promising low lost and high efficiency
adsorbent for Cu(II) and Pb(II) removal from waste
water and can be applied in a magnetically assisted
water treatment technology.
References
Adamson A.W., and Gast A.P., 2001, Physical chemistry of surfaces, 6
th
ed,
John Wiley and Sons, Inc., New York
Al-Saadie K.A., and Jassim S.B., 2010, Adsorption study for chromium on
Iraqi Bentonite. Baghdad Sci. J., 7(1): 1-12
Al-Tameemi I.A., Nasser T., and Ibraheem T.M., 2012, Removal of Pb(II),
Cd(II) Ions onto dried
Conocarpus erectus
leaves using batch
adsorption and study the adsorption thermodynamics. J. Chem. Pharm.
Res., 4(12): 4961-4968
Amdur, M.O., Doull, J. and Klaasen, C. 1991. In Casarett and Doull
,
s
Toxicology, The basic science of poisons pergamon press, New
York
Bulut, Y. and Tez, Z. 2007. Removal of heavy metals from aqueous solution
by sawdust adsorption. J. Environ. Sci., 19: 160-166
Chu, K.H. and Hashim, M.A. 2001. Desorption of copper from polyvinyl
alcohol immobilized seaweed biomass
.
Acta Biotechnol., 21(4):
295-306
El-Ashtoukhy E., Amina, N.K. and Abdelwahab, O. 2008. Removal of
lead (II) and copper (II) from aqueous solution using pomegranate peel
as anew adsorbent. Desalination, 223: 162-173
Esposito, A., Pagnanelli, F. and Veglio, F. 2002. pH-related equilibria models
for biosorption in single metal systems. Chem. Engin. Sci., 57: 307-313
Fugas M. and Saric, F. 1981. Health study of lead, D.R. Lyman, L.G.
pintandia and cole, Academic Press, New York, 168pp
Giles, C.H., MamEwans, T.H., Nakhwa, S.N. and Smith D. 1960. Studies in
Adsorption. A System of classification of solution adsorption isotherms,
and its use in diagnosis of adsorption, and its use in diagnosis of
adsorption mechanisms and in measurement of specific surface areas of
solids. J. Chem. Soc, 786: 3973-3993
Hawari, A., Rawajfih, Z. and Nsour, N. 2009. Equilibrium and
thermodynamic analysis of zinc ions adsorption by olive oil mill solid
residues. J. Hazard Mater., 168: 1284-1289
Hefne, J.A., Mekhemer, W.K., Alandis, N.M., Aldayel, O.A. and Alajyan, T.
2008. Kinetic and thermodynamic study of the adsorption of Pb(II) from
aqueous solution to the natural and treated bentonite. Int. J. Phy. Sci.,
3(11): 281-288
Jianwe, R., Mokgadi, F., Bopape, K.S., Jacobo, O. and Kitinya, M.O.
2012 Sorption of Pb(II) and Cu(II) by Low-Cost magnetic
eggshells-Fe
3
O
4
powder, Chem. Industry & Chem. Engineering
Quarterly, 18(2): 221-231
Ltorrison, R.M. and laven, D.P.H. 1981. lead pollution causes and control,
London Chapman and Hall
Lund, W. 1994. The Pharmaceutical Codex, 12
th
ed. The Pharmaceutical
Press, London, pp: 774-8512
Meena, A.K., Mishra, G.K., Rai, P.K., Rajagopal, C. and Nagar, P.N. 2005.
Removal of heavy metal ions from aqueous solutions using carbon
aerogel as an adsorbent. J. Hazard. Mater., 122: 161-170
Moreno-Barbosa, J.J., Catalina, L.V., Delpilar, M.A., Liliana, G.,
Juancarlos, M.P. 2013. Removal of lead (II) and zinc (II) ions from
aqueous solutions by adsorption onto activated carbon synthesized from
watermelon shell and walnut shell. Adsorption, 19: 675-685
Nasef, M.M. and Yahaya, A.H. 2009. Adsorption of some heavy metal
ions from aqueous solutions on Nafion 117 membrane
.
Desalination,
249: 677-681
Newland, L.W. and Dawn K.A. 1982. In the hand book of environmental
chemistry, an thropogenic compounds, 3(B), EDO. Hutzinger.
Springer-Verlag Berlin Heidelerg, New York
Prabakaran, R., Arivoli, S., Hema, M. and Kamatchi, C. 2011. Removal of
copper ion from aqueous solutions by low cost activated carbon from
Thespesia Populnea Bark. J. Chem. Pharm. Res., 3(5): 532-543
Silverstein, M., Robert, M. and Morril, T.C. 2005. Spectrometric
identification of organic compounds, 7
th
ed
Stoker, H.S. and Seager, S.L. 1976 .Environmental Chemistry. Air and water
pollution, 2
nd
ed
Taher, A., Mohsin, M., Maqdoom, F. and Mazahar, F. 2011. Isotherm and
thermodynamic studies on the removal of lead by using low cost
material. Asian J. Biochem. Pharmaceutical Res., 1: 431-436
Veena, M. and Robert, H.H. 2002. The Role of F-400 granular activated
carbon in scavenging dissolved copper ions from aqueous solution.
Energeia, 13: 1-4
WHO, 1977. Environmental health criteria 3, lead. World health
organization, Geneva
WHO, 1984. Guideline values for Drinking Water Quality
1...,2,3,4,5,6,7,8,9,10 12,13,14
Powered by FlippingBook