Page 14 - 731-IJMS-no.17 Dr. Rukminasari

Basic HTML Version

International Journal of Marine Science 2013, Vol.3, No.17, 135-144
http://ijms.sophiapublisher.com
144
Effect of temperature and nitrogen concentration on the growth and
lipid content of
Nannochlopsis oculata
and Chlorella vulgaris for
biodiesel production. Chemical Engineering and Processing, 48:
1146-1151
http://dx.doi.org/10.1016/j.cep.2009.03.006
Cooksey K.E., Gucker J.B., Williams S.A., and Callis P.R., 1987,
Fluorometric determination of the neutral lipid content of microalgal
cells using Nile Red, Journal of Microbiological Methods, 6: 333-345
http://dx.doi.org/10.1016/0167-7012(87)90019-4
Dayananda C., Sarada R., Usha R.M., Shamala T.R., and Ravishankar G.A.,
2007, Autotrophic cultivation of
Botryococcus braunii
for the
production of hydrocarbons and exopolysaccharides in varius media,
Biomass and Bioenergy, 31: 87-93
http://dx.doi.org/10.1016/j.biombioe.2006.05.001
Dean A.P., Sigee D.C., Estrada B., and Pittman J.K., 2010, Using FTIR
spectroscope for rapid determination of lipid accumulation in response
to nitrogen limitation in freshwater microalgae, Bioresource
Technology, 101: 4499-4507
http://dx.doi.org/10.1016/j.biortech.2010.01.065
PMid:20153176
Deng X., Li Y., and Fei X., 2009, Microalgae: a promising feedstock for
biodiesel. African Journal of Microbiology Research, 3 (13):
1008-1014.
Elsey D., Jameson D., Raleigh B., and Cooney M.J., 2007, Fluorescent
measurement of microalgal neutral lipids, Journal of Microbiological
Methods, 68: 639-642
http://dx.doi.org/10.1016/j.mimet.2006.11.008
PMid:17189655
Garcia F., Freile-Pelegrin Y., and Robledo D., 2007, Physioogical
characterization of
Dunaliella
sp (Chlorophyta, Volvocales) from
Yucatan, Mexico, Bioresource Technology, 98: 1359-1965
http://dx.doi.org/10.1016/j.biortech.2006.05.051
PMid:16949279
Giardano M., Kansiz M., Heraud P., and Beardall J., 2001, Fourier
transforms infrared spectroscope as a novel tool to investigate changes
in intracellular macromolecular pools in the marine microalga
Chaetoceros muellerii
(Bacillariophyceae), Journal of Phycology, 37:
271-279
http://dx.doi.org/10.1046/j.1529-8817.2001.037002271.x
Giffiths M.J., and Horrison S.T.L., 2009, Lipid productivity as a key
characteristic for choosing algal species for biodiesel production,
Journal of Applied Phycology, 21: 493-507
http://dx.doi.org/10.1007/s10811-008-9392-7
Guckert J.B., Cooksey K.E., and Jackson L.L., 1988, Lipid solvent systems
are not equivalent for analysis of lipid classes in the microeukaryotic
green alga, Chlorella, Journal of Microbiological Methods, 8: 139-149
http://dx.doi.org/10.1016/0167-7012(88)90015-2
Ho S.H., Chen W.M., and Chang J.S., 2010,
Scenedesmus obliquus
CNW-N
as a potential candidate for CO2 mitigation and biodiesel production,
Bioresources Technology, 101: 8725-8730
http://dx.doi.org/10.1016/j.biortech.2010.06.112
PMid:20630743
Hossain A.B., and Salleh A., 2008, Biodiesel fuel production from algae as
renewable energy, American Journal of Biochemistry and
Biotechnology, 4 (3): 250-254
http://dx.doi.org/10.3844/ajbbsp.2008.250.254
Huntley M.E., Mosier A.R., Smith K.A., and Winiwarter W., 2007, N2O
release from agro-biofuel production negates global warming reduction
by replacing fossil fuel, Atmosphere Chemist and Physic, 12: 573-608
James C.M., Al-Hinty S., and Slman A.E., 1989, Growth and ω3 fatty acid
composition of marine microalgae under different temperature regimes,
Aquaculture, 77: 337-351
http://dx.doi.org/10.1016/0044-8486(89)90218-4
Lardon L., Helias A., Sialve B., Steyer J.P., and Bernard O., 2009, Life cycle
assessment of biodiesel production from microalgae. Environment
Science and Technology, 43(17): 6475–6481
http://dx.doi.org/10.1021/es900705j
PMid:19764204
Lee S.J., Yoon B.D., and Oh H.M., 1998, Rapid method for the
determination of lipid from the green alga
Botryococcus braunii
,
Biotechnology Techniques, 12(7): 553-556
http://dx.doi.org/10.1023/A:1008811716448
Li Q., Du W., and Liu D., 2008, Perspective of microbial oils for biodiesel
production, Applied Microbiology and Biotechnology, 80: 749-756
http://dx.doi.org/10.1007/s00253-008-1625-9
PMid:18690426
Liu Z.Y., Wang G.C., and Zhou B.C., 2008, Effect of iron on growth and
lipid accumulation in
Chlorella vulgaris
, Bioresource Technology,
99(11): 4717-4722
http://dx.doi.org/10.1016/j.biortech.2007.09.073
PMid:17993270
Lv J.M., Cheng L.H., Xu X.H., Zhang L., and Chen H.L., 2010, Enhanced
lipid production of Chlorella vulgaris by adjustment of cultivation
conditions, Bioresource Technology, 101: 6797-6804
http://dx.doi.org/10.1016/j.biortech.2010.03.120
PMid:20456951
Norman H.A., and Thompson Jr G.A., 1985, Effects of low-temperature
stress on the metabolism of phosphatidyglycerol molecular species in
Dunaliella salina
. Plant Physiology and Biochemistry, 242: 168-175
Ono E., and Cuello J.I., 2007, Carbon dioxide mitigation using thermophilic
cyanobacteria, Biosystem Engineering, 96: 129-134
http://dx.doi.org/10.1016/j.biosystemseng.2006.09.010
Phadwal K., and Singh P.K., 2003, Effect of nutrient depletion on β-carotene
and glycerol accumulating in two strains of
Dunaliella
sp, Bioresource
Technology, 90: 55-58
http://dx.doi.org/10.1016/S0960-8524(03)00090-7
Rodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., and Tredici M.R.,
2009, Microalgae for oil: Strain selection, induction of lipid synthesis
and outdoor mass cultivation in low-cost photobioreactor,
Biotechnology and Bioengineering, 102: 100-112
http://dx.doi.org/10.1002/bit.22033
PMid:18683258
Rossler P.G., 1988, Changes in the activities of various lipid and
carbohydrate biosynthetic enzymes in the diatom
Cyclotella cryptica
in
response to silicon deficiency, Arch. Biochemical and Biophysic, 267:
521-528
http://dx.doi.org/10.1016/0003-9861(88)90059-8
Sayegh F.A.Q., and Montagnes D.J.S., 2010, Temperature shifts induce
intraspecific variation in microalgal production and biochemical
composition, Bioresources Technology, 102: 3007-3013
http://dx.doi.org/10.1016/j.biortech.2010.10.011
PMid:20970325
Shay E.G., 1993, Diesel fuel from vegetable oils: status and opportunities.
Biomass Energy, 4: 227-242
`
http://dx.doi.org/10.1016/0961-9534(93)90080-N
Sheehan J., Dunahay T., Beneman T., and Roessler P., 1998, A look back at
the US department of enrgy's aquatic species program-biodiesel from
algae. National Reweable Energy Laboratorium (NREL)
http://dx.doi.org/10.2172/15003040
Stehfest K., Toepel J., and Wilhelm C., 2005, The application of micro-FTIR
spectroscopy to analyze nutrient stress-related changes in biomass
composition of phytoplankton algae, Plant Physiology and
Biochemistry, 43: 717-726
http://dx.doi.org/10.1016/j.plaphy.2005.07.001
PMid:16122937
Sukenik A., and Livne A., 1991, Variations in lipid and fatty acid content in
relation to acetyl CoA carboxylase in the marine Prymnesiophyte
Isochrysis galbana
, Plant Cell Physiology, 32: 371-378
Tzovenik I., De Pauw N., and Sorgeloos P., 2003, Optimization of T-ISO
biomass production rich in essential fatty acids I. Effect of different
light regimes on growth and biomass production, Aquaculture, 216:
203-222
http://dx.doi.org/10.1016/S0044-8486(02)00374-5
Wagner H., Liu Z., Langner U., Stehfest K., and Wilhelm C., 2010, The use
of FTIR spectroscopy to assess quantitative changes in the biochemical
composition of microalgae, Journal of Biophotonic, 3: 557-566
http://dx.doi.org/10.1002/jbio.201000019
PMid:20503222