Page 13 - Molecular Plant Breeding

Basic HTML Version

Molecular Plant Breeding 2012, Vol.3, No.1, 1
-
10
http://mpb.sophiapublisher.com
10
http://dx.doi.org/10.1093/jxb/err144 PMid:21725029 PMCid:3193001
Temnykh S., Park D.W,, Ayres N., Cartinhour S., Hauck N., Lipovich L.,
Cho Y.G., Ishii T., and McCouch S.R., 2000, Mapping and genome
organization of microsatellite sequences in rice (Oryza sativa L.), TAG,
100(5): 697-712
Tripathy J.N., Zhang J.X., Robin S., Nguyen Th.T., and Nguyen H.T., 2000,
QTLs for cell-membrane stability mapped in rice (Oryza sativa L.)
under drought stress, TAG, 100(8): 1197-1202 http://dx.doi.org/10.1007/
s001220051424
Turner N.C., 1979, Drought resistance and adaptation to water deficits in
crop plants, In: Mussell H., and Staples C.R. (eds.), Stress physiology
in crop plants, Wiley, New York, pp.343-372
Uga Y., Okuno K., and Yano M., 2011,
Dro1
, a major QTL involved in deep
rooting of rice under upland field conditions, Journal of Experimental
Botany, 62(8): 2485-2494 http://dx.doi.org/10.1093/jxb/erq429
PMid:21212298
Venuprasad R., Lafitte H.R., and Atlin G.N., 2007, Response to direct
selection for grain yield under drought stress in rice, Crop Sci., 47(1):
285-293 http://dx.doi.org/10.2135/cropsci2006.03.0181
Wang W.X., Vinocur B., Shoseyov O., and Altman A., 2004, Role of plant
heat shock proteins and molecular chaperones in the abiotic stress
response, Trends in Plant Science, 9(5): 244-252 http://dx.doi.org/10.1016/
j.tplants.2004.03.006 PMid:15130550
William H.M., Trethowan R., and Crosby-Galvan E.M., 2007, Wheat
breeding assisted by markers: CIMMYT’s experience, Euphytica,
157(3): 307-319 http://dx.doi.org/10.1007/s10681-007-9405-7
Wu X.L., Shiroto Y., Kishitani S., Ito Y., and Toriyama K., 2009, Enhanced
heat and drought tolerance in transgenic rice seedlings overexpressing
OsWRKY11
under the control of
HSP101
promoter, Plant Cell Reports,
28(1): 21-30 http://dx.doi.org/10.1007/s00299-008-0614-x PMid:18818929
Xiao B.Z., Huang Y.M., Tang N., and Xiong L.Z., 2007, Over-expression of
LEA
gene in rice improves drought resistance under field conditions,
TAG, 115(1): 35-46 http://dx.doi.org/10.1007/s00122-007-0538-9
PMid:17426956
Xu D., Duan X., Wang B., Hong B., Ho T.H.D., and Wu R., 1996,
Expression of late embryogenesis abundant protein gene HVA1, from
barley confers tolerance to water deficit and salt stress in transgenic
rice, Plant Physiol., 110(1): 249-257 PMid:12226181 PMCid:157716
Yue B., Xiong L.Z., Xue W.Y., Xing Y.Z., Luo L.J., and Xu C.G., 2005,
Genetic analysis for drought resistance of rice at reproductive stage in
field with different types of soil, TAG, 111(6): 1127-1136
http://dx.doi.org/10.1007/s00122-005-0040-1 PMid:16075205
Yu J., Hu S.N., Wang J., Wong G.K.S., Li S.G., Liu B., Deng Y.J., Dai L.,
Zhou Y., Zhang X.Q., Cao M.L., Liu J., Sun J.D., Tang J.B., Chen Y.J.,
Huang X.B., Lin W., Ye C., Tong W., Cong L.J., Geng J.L., Han Y.J., Li
L., Li W., Hu G.Q., Huang X.G., Li W.J., Li J., Liu Z.W., Li L., Liu J.P.,
Qi Q.H., Liu J.S., Li T., Wang X.G., Lu H., Wu T.T., Zhu M., Ni P.X.,
Han H., Dong W., Ren X.Y., Feng X.L., Cui P., Li X.R., Wang H., Xv
X., Zhai W.X., Xv Z., Zhang J.S., He S.J., Zhang J.G., Xv J.C., Zhang
K.L., Zheng X.W., Dong J.H., Zeng W.Y., Tao L., Tan J., Ren X.D.,
Chen X.W., He J., Liu D.F., Tian W., Tian C.G., Xia H.G., Bao Q.Y., Li
G., Gao H., Cao T., Wang J., Zhao W.M., Li P., Chen W., Wang X.D.,
Zhang Y., Hu J.F., Wang J., Liu S., Yang J., Zhang G.Y., Xiong Y.Q., Li
Z.J., Mao L., Zhou C.S., Zhu Z., Chen R.S., Hao B.L., Zheng W.M.,
Chen S.Y., Guo W., Li G.J., Liu S.Q., Tao M., Wang J., Zhu L.H., Yuan
L.P., and Yang H.M., 2002, A draft sequence of the rice genome (
Oryza
sativa
L. ssp.
indica
), Science, 296(5565): 79-92 http://dx.doi.org/10.1126/
science.1068037 PMid:11935017
Yue B., Xue W.Y., Xiong L.Z., Yu X.Q., Luo L.J., Cui K.H., Jin D.M., Xing
Y.Z., and Zhang Q.F., 2006, Genetic basis of drought resistance at
reproductive stage in rice: separation of drought tolerance from drought
avoidance, Genetics, 172(2): 1213-1228 http://dx.doi.org/10.1534/
genetics.105.045062 PMid:16272419 PMCid:1456219
Zhang H.W., Liu W., Wan L.Y., Li F., Dai L.Y., Li D.J., Zhang Z.J., and
Huang R.F., 2010, Functional analyses of ethylene response factor
JERF3 with the aim of improving tolerance to drought and osmotic
stress in transgenic rice, Transgenic Res., 19(5): 809-818
http://dx.doi.org/10.1007/s11248-009-9357-x PMid:20087656
Zhang J., Zheng H.G., Aarti A., Pantuwan G., Nguyen T.T., Tripathy J.N.,
Sarial A.K., Robin S., Babu R.C., Nguyen B.D., Sarkarung S., Blum A.
and Nguyen H.T., 2001, Locating genomic regions associated with
components of drought resistance in rice: comparative mapping within
and across species, TAG, 103(1): 19-29 http://dx.doi.org/10.1007/
s001220000534
Zhang J.Z., Creelman R.A. and Zhu J.K., 2004, From laboratory to field.
using information from Arabidopsis to engineer salt, cold, and drought
tolerance in crops, Plant Physiol., 135(2): 615-621 http://dx.doi.org/10.1104/
pp.104.040295 PMid:15173567 PMCid:514097
Zhang Z.J., Li F., Li D.J., Zhang H.W., and Huang R.F., 2010, Expression of
ethylene response factor JERF1 in rice improves tolerance to drought,
Planta, 32(3): 765-774 http://dx.doi.org/10.1007/s00425-010-1208-8
PMid:20574667
Zhao B.T., Liang R.Q., Ge L.F., Li W., Xiao H.S., Lin H.X., Ruan K.C., and
Jin Y.X., 2007, Identification of drought-induced microRNAs in rice,
Biochemical and Biophysical Research Communications, 354(2):
585-590 http://dx.doi.org/10.1016/j.bbrc.2007.01.022 PMid:17254555
Zhou W., Li Y., Zhao B.C., Ge R.C., Shen Y.Z., Wang G. and Huang Z.J.,
2009, Overexpression of
TaSTRG
gene improves salt and drought
tolerance in r ice, J . Plant Physiol . , 166(15): 1660-1671
http://dx.doi.org/10.1016/j.jplph.2009.04.015 PMid:19481835