Page 12 - Molecular Plant Breeding

Basic HTML Version

Molecular Plant Breeding 2012, Vol.3, No.1, 1
-
10
http://mpb.sophiapublisher.com
9
Leung H., 2008, Stressed genomics-bringing relief to rice fields, Current
Opinion in Plant Biology, 11(2): 201-208 http://dx.doi.org/10.1016/
j.pbi.2007.12.005 PMid:18294900
Lilley J.M., Ludlow M.M., McCouch S.R., and O'Toole J.C., 1996, Locating
QTL for osmotic adjustment and dehydration tolerance in rice, J. Exper.
Bot., 47(302): 1427-1436 http://dx.doi.org/10.1093/jxb/47.9.1427
Luo L.J., and Zhang Q.F., 2001, The status and strategy on drought
resistance of rice (
Oryza sativa
L.), Chinese J. Rice Sci., 15(3):
209-214
Mallikarjuna G., Mallikarjuna K., Reddy M.K., and Kaul T., 2011,
Expression of OsDREB2A transcription factor confers enhanced
dehydration and salt stress tolerance in rice (
Oryza sativa
L.),
Biotechnology Letter, 33(8): 1689-1697 http://dx.doi.org/10.1007/
s10529-011-0620-x PMid:21528404
McCouch S.R., Kochert G., Yu Z.H., Wang Z.Y., Khush G.S., Coffman W.R.,
and Tanksley S.D., 1988, Molecular mapping of rice nuclear genome,
TAG, 76(6): 815-829 http://dx.doi.org/10.1007/BF00273666
McWilliam J.R., 1989, The dimensions of drought, In: Baker F.W.G.(eds.),
Drought resistance in cereals, CAB International, Wallingford, UK,
pp.1-11
Mohan M., Nair S., Bhagwat A., Krishna T.G., Yano M., Bhatia C.R., and
Sasaki T., 1997, Genome mapping, molecular markers and
marker-assisted selection in crop plants, Molecular Breeding,
3(2):87-103 http://dx.doi.org/10.1023/A:1009651919792
Nguyen H.T., Babu R.C., and Blum A., 1997, Breeding for drought
resistance in rice: physiology and molecular genetics considerations,
Crop Sci., 37(5): 1426-1434 http://dx.doi.org/10.2135/cropsci1997.
0011183X003700050002x
Obara M., Tamura W., Ebitani T., Yano M., Sato T., and Yamaya T., 2010,
Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings
grown under a wide range of NH4 + concentrations in hydroponic
conditions, TAG, 121(3): 535-547 http://dx.doi.org/10.1007/s00122-
010-1328-3 PMid:20390245 PMCid:2903690
Oh S.J., Kim Y.S., Kwon C.W., Park H.K., Jeong J.S., and Kim J.K., 2009,
Overexpression of the transcription factor AP37 in rice improves grain
yield under drought conditions, Plant Physiol., 150(3): 1368-1379
http://dx.doi.org/10.1104/pp.109.137554 PMCid:2705040
Oh S.J., Kwon C.W., Choi D.W., Song S.I., and Kim J.K., 2007, Expression
of barley HvCBF4 enhances tolerance to abiotic stress in transgenic
rice, Plant Biotech. J., 5(5): 646-656 http://dx.doi.org/10.1111/j.1467-
7652.2007.00272.x PMid:17614953
Oh S.J., Song S.I., Kim Y.S., Jang H.J., Kim S.Y., Kim M. Kim Y.K., Nahm
B.H., and Kim J.K., 2005, Arabidopsis CBF3/DREB1A and ABF3 in
transgenic rice increased tolerance to abiotic stress without stunting
growth, Plant Physiol., 138(1): 341-351 http://dx.doi.org/10.1104/
pp.104.059147 PMid:15834008 PMCid:1104188
Price A., and Courtois B., 1999, Mapping QTLs associated with drought
resistance in rice: progress, problems and prospects, Plant Growth
Regulation, 29(1-2): 123-133 http://dx.doi.org/10.1023/A:1006255832479
Price A.H., Townend J., Jones M.P., Audebert A., and Courtois B., 2002,
Mapping QTLs associated with drought avoidance in upland rice
grown in the Philippines and West Africa, Plant Mol. Biol., 48(5-6):
683-695 http://dx.doi.org/10.1023/A:1014805625790 PMid:11999843
Qu Y.Y., Mu P., Zhang H.L., Chen C.Y., Gao Y.M., Tian Y.X., Wen F., and
Li Z.C., 2008, Mapping QTLs of root morphological traits at different
growth stages in rice, Genetica, 133(2): 187-200 http://dx.doi.org/10.1007/
s10709-007-9199-5 PMid:17823843
Quan R.D., Hu S.J., Zhang Z.L., Zhang H.W., Zhang Z.J., and Huang R.F.,
2010, Overexpression of an ERF transcription factor
TSRF1
improves
rice drought tolerance, Plant Biotechnology Journal, 8(4): 476-488
http://dx.doi.org/10.1111/j.1467-7652.2009.00492.x PMid:20233336
Quarrie S.A., Laurie D.A., Zhu J.H., Lebreton C., Semikhodskii A., Steed A.,
Witsenboer H., and Calestani C., 1997, QTL analysis to study the
association between leaf size and abscisic acid accumulation in droughted
rice leaves and comparisons across cereals, Plant Mol. Biol., 35(1-2):
155-165 http://dx.doi.org/10.1023/A:1005864202924 PMid:9291969
Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito Y.,
Yoshiwara K., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K.,
2003, Monitoring expression profiles of rice genes under cold, drought,
and high-salinity stresses and abscisic acid application using cDNA
microarray and RNA gel-blot analyses, Plant Physiol., 133(4):
1755-1767 http://dx.doi.org/10.1104/pp.103.025742 PMid:14645724
PMCid:300730
Rabello A.R., Guimarães C.M., Rangel P.H.N., Silva F.R.D., Seixas D.,
Souze E., Brasileiro A.C.M., Spehar C.R., Ferreira M.E., and Mehta Â.,
2008, Identification of drought-responsive genes in roots of upland rice
(
Oryza sativa
L), BMC Genomics, 9: 485-497 http://dx.doi.org/10.1186/
1471-2164-9-485 PMid:18922162 PMCid:2605477
Salekdeh Gh.H., Siopongco J., Wade L.J., Ghareyazie B., and Bennett J.,
2002, A proteomic approach to analyzing drought- and
salt-responsiveness in rice, Field Crops Res., 76(2-3): 199-219
http://dx.doi.org/10.1016/S0378-4290(02)00040-0
Sasaki T., Matsumoto T., Yamamoto K., Sakata K., Baba T., Katayose Y.,
Wu J., Niimura Y., Cheng Z., Nagamura Y., Anonio B.A., Kanamori H.,
Hosokawa S., Masukawa M., Arikawa K., Chiden Y., Hayashi M.,
Okamoto M., Ando T., Aoki H., Arita K., Hamada M., Harada C.,
Hijishita S., Honda M., Ichlkawa Y., Idonuma A., Iijima M., Ikeda M.,
Ikeno M., Ito S., Ito T., Ito Y., Ito Y., Iwabuchi A., Kamya K.,
Karadawa W., Katagiri S., Kikuta A., Kobayashi N., Kono I., Machita
K., Maeara T., Mizuno H., Mizubayashi T., Mukai Y., Nagasaki H.,
Nakashima M., Nakama Y., Nakamichi Y., Nakamura M., Namiki N.,
Negishi M., Ohta I., Ono N., Saji S., Sakai K., Shibata M., Shimokawa
T., and Shomura A., 2002, The genome sequence and structure of rice
chromosome 1, Nature, 420(6913): 312-316 http://dx.doi.org/10.1038/
nature01184 PMid:12447438
Sato S., Soga T., Nishioka T., and Tomita M., 2004, Simultaneous
determination of the main metabolites in rice leaves using capillary
electrophoresis mass spectrometry and capillary electrophoresis diode
array detection, The Plant J., 40(1): 151-163 http://dx.doi.org/10.1111/
j.1365-313X.2004.02187.x PMid:15361149
Shimamoto Ko., and Kyozuka J., 2002, Rice as a model for comparative
genomics of plants, Annual Rev. Plant. Biol., 53: 399-419
PMid:12221982
Steele K.A., Price A.H., Shashidar H.E., and Witcombe J.R., 2006,
Marker-assisted selection to introgress rice QTLs controlling root traits
into an Indian upland rice variety, TAG, 112(2): 208-221
http://dx.doi.org/10.1007/s00122-005-0110-4 PMid:16208503
Subashri M., Robin S., Vinod K.K., Rajeswari S., Mohanasundaram K., and
Raveendran T.S., 2009, Trait identification and QTL validation for
reproductive stage drought resistance in rice using selective genotyping
of near flowering RILs, Euphytica, 166(2): 291-305 http://dx.doi.org/
10.1007/s10681-008-9847-6
Tao Z., Kou Y.J., Liu H.B., Li X.H., Xiao J.H., and Wang S.P., 2011,
OsWRKY45 alleles play different roles in abscisic acid signalling and
salt stress tolerance but similar roles in drought and cold tolerance in
rice, Journal of Experimental Botany, 62(14): 4863-4874