MP_2024v15n5

Molecular Pathogens 2024, Vol.15, No.5, 246-254 http://microbescipublisher.com/index.php/mp 253 Booher N., Carpenter S., Sebra R., Wang L., Salzberg S., Leach J., and Bogdanove A., 2015, Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships, Microbial Genomics, 1(4): 32. https://doi.org/10.1099/mgen.0.000032 Cai L.L., Cao Y.Y., Xu Z.Y., Ma W.X., Zakria M., Zou L.F., Cheng Z.Q., and Chen G.Y., 2017, A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity, Scientific Reports, 7: 5089. https://doi.org/10.1038/s41598-017-04800-8 Cohn M., Morbitzer R., Lahaye T., and Staskawicz B., 2016, Comparison of gene activation by two TAL effectors fromXanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava, Molecular Plant Pathology, 17(6): 875-889. https://doi.org/10.1111/mpp.12337 Denancé N., Lahaye T., and Noël L., 2016, Editorial: genomics and effectomics of the crop killer Xanthomonas, Frontiers in Plant Science, 7: 71. https://doi.org/10.3389/fpls.2016.00071 Denancé N., Szurek B., Doyle E., Lauber E., Fontaine-Bodin L., Carrère S., Guy E., Hajri A., Cerutti A., Boureau T., Poussier S., Arlat M., Bogdanove A., and Noël L., 2018, Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire, The New Phytologist, 219(1): 391-407. https://doi.org/10.1111/nph.15148 Doucouré H., Auguy F., Blanvillain-Baufumé S., Fabre S., Gabriel M., Thomas E., Dambreville F., Sciallano C., Szurek B., Koita O., Verdier V., and Cunnac S., 2022, The rice ILI2 locus is a bidirectional target of the African Xanthomonas oryzae pv. oryzae major transcription activator-like effector TalC but does not contribute to disease susceptibility, International Journal of Molecular Sciences, 23(10): 5559. https://doi.org/10.3390/ijms23105559 Huang Q.K., 2024, Enhancing soil health and biodiversity through nitrogen fixation symbiosis in Leguminous plants, Molecular Microbiology Research, 14(1): 49-60. https://doi.org/10.5376/mmr.2024.14.0006 Hummel A., Wilkins K., Wang L., Cernadas R., and Bogdanove A., 2017, A transcription activator-like effector fromXanthomonas oryzae pv. oryzicola elicits dose-dependent resistance in rice, Molecular Plant Pathology, 18(1): 55-66. https://doi.org/10.1111/mpp.12377 Hutin M., Pérez-Quintero Á., López C., and Szurek B., 2015, MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility, Frontiers in Plant Science, 6: 535. https://doi.org/10.3389/fpls.2015.00535 Ji Z.Y., Ji C.H., Liu B., Zou L.F., Chen G.Y., and Yang B., 2016, Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance, Nature Communications, 7: 13435. https://doi.org/10.1038/ncomms13435 Kim J., and Mudgett M., 2019, Tomato bHLH132 transcription factor controls growth and defense and is activated by Xanthomonas euvesicatoria effector XopD during pathogenesis, Molecular Plant-Microbe Interactions, 32(12): 1614-1622. https://doi.org/10.1094/MPMI-05-19-0122-R Mondal K., Soni M., Verma G., Kulshreshtha A., Mrutyunjaya S., and Kumar R., 2020, Xanthomonas axonopodis pv. punicae depends on multiple non-TAL (Xop) T3SS effectors for its coveted growth inside the pomegranate plant through repressing the immune responses during bacterial blight development, Microbiological Research, 240: 126560. https://doi.org/10.1016/j.micres.2020.126560 Peng Z., Hu Y., Zhang J.L., Huguet-Tapia J., Block A., Park S., Sapkota S., Liu Z., Liu S., and White F., 2019, Xanthomonas translucens commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility, Proceedings of the National Academy of Sciences of the United States of America, 116: 20938-20946. https://doi.org/10.1073/pnas.1911660116 Pérez-Quintero Á., Lamy L., Gordon J., Escalon A., Cunnac S., Szurek B., and Gagnevin L., 2015, QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically, Frontiers in Plant Science, 6(42): 20938-20946. https://doi.org/10.3389/fpls.2015.00545 Pérez-Quintero Á., Rodriguez-R L., Cuesta-Morrondo S., Hakalova E., Betancurt-Anzola D., Valera L., Cárdenas L., Matiz-Ceron L., Jacobs J., Román-Reyna V., Muñoz A., Bernal A., and Koebnik R., 2023, Comparative genomics identifies conserved and variable TAL effectors in African strains of the cotton pathogen Xanthomonas citri pv. malvacearum, Phytopathology, 113(8): 1387-1393. https://doi.org/10.1094/PHYTO-12-22-0477-SC Read A., Rinaldi F., Hutin M., He Y., Triplett L., and Bogdanove A., 2016, Suppression of Xo1-mediated disease resistance in rice by a truncated, non-DNA-binding TAL effector of Xanthomonas oryzae, Frontiers in Plant Science, 7: 1516. https://doi.org/10.3389/fpls.2016.01516 Teper D., and Wang N., 2021, Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas, PLoS Genetics, 17(1): e1009310. https://doi.org/10.1371/journal.pgen.1009310 Tran T., Pérez-Quintero Á., Wonni I., Carpenter S., Yu Y., Wang L., Leach J., Verdier V., Cunnac S., Bogdanove A., Koebnik R., Hutin M., and Szurek B., 2018, Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice, PLoS Pathogens, 14(6): e1007092. https://doi.org/10.1371/journal.ppat.1007092

RkJQdWJsaXNoZXIy MjQ4ODYzNA==