Molecular Pathogens 2024, Vol.15, No.5, 219-226 http://microbescipublisher.com/index.php/mp 226 Khan A., Hassan M., and Khan M., 2020, Conventional plant breeding program for disease resistance, Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches, 13: 27-51. https://doi.org/10.1007/978-3-030-35955-3_3 Koeppe S., Kawchuk L., and Kalischuk M., 2023, RNA interference past and future applications in plants, International Journal of Molecular Sciences, 24(11): 9755. https://doi.org/10.3390/ijms24119755 Langridge P., and Fleury D., 2011, Making the most of 'omics' for crop breeding, Trends in Biotechnology, 29(1): 33-40. https://doi.org/10.1016/j.tibtech.2010.09.006 Mahmood U., Li X., Fan Y., Chang W., Niu Y., Li J., Qu C., and Lu K., 2022, Multi-omics revolution to promote plant breeding efficiency, Frontiers in Plant Science, 13: 1062952. https://doi.org/10.3389/fpls.2022.1062952 Mangandi J., Verma S., Osorio L., Peres N., Weg E., and Whitaker V., 2017, Pedigree-based analysis in a multiparental population of octoploid strawberry reveals QTL alleles conferring resistance to Phytophthora cactorum, G3: Genes Genomes Genetics, 7: 1707-1719. https://doi.org/10.1534/g3.117.042119 Menzel C., 2021, A review of powdery mildew in strawberries: the resistance of species hybrids and cultivars to the pathogen is highly variable within and across studies with no standard method for assessing the disease, The Journal of Horticultural Science and Biotechnology, 97: 273-297. https://doi.org/10.1080/14620316.2021.1985402 Merrick L.F., Burke A.B., Chen X., and Carter A.H., 2021, Breeding with major and minor genes: genomic selection for quantitative disease resistance, Frontiers in Plant Science, 12: 713667. https://doi.org/10.3389/fpls.2021.713667 Merrick L.F., Herr A.M., Sandhu K.S., Lozada D.N., and Carter A.H., 2022, Optimizing plant breeding programs for genomic selection, Agronomy, 12(3): 714. https://doi.org/10.20944/preprints202202.0048.v1 Najafabadi M., Hesami M., and Eskandari M., 2023, Machine learning-assisted approaches in modernized plant breeding programs, Genes, 14(4): 777. https://doi.org/10.3390/genes14040777 O’Connor K., Neal J., Gomez A., and Faveri J., 2022, Using DNA information to breed for disease-resistant strawberries, Proceedings of The Royal Society of Queensland, 131: 147. https://doi.org/10.53060/prsq.2022-16 Osorio L., Pattison J., Peres N., and Whitaker V., 2014, Genetic variation and gains in resistance of strawberry to Colletotrichum gloeosporioides, Phytopathology, 104(1): 67-74. https://doi.org/10.1094/PHYTO-02-13-0032-R Pandolfi V., Neto J., Silva M., Amorim L., Wanderley-Nogueira A., Silva R., Kido É., Crovella S., and Iseppon A., 2017, Resistance (R) genes: applications and prospects for plant biotechnology and breeding, Current Protein and Peptide Science, 18(4): 323-334. https://doi.org/10.2174/1389203717666160724195248 Pincot D.D.A., Hardigan M.A., Cole G.S., Famula R.A., Henry P.M., Gordon T.R., and Knapp S.J., 2020, Accuracy of genomic selection and long‐term genetic gain for resistance to Verticillium wilt in strawberry, The Plant Genome, 13(3): e20054. https://doi.org/10.1002/tpg2.20054 Súnico V., Higuera J., Molina-Hidalgo F., Blanco-Portales R., Moyano E., Rodríguez-Franco A., Muñoz-Blanco J., and Caballero J., 2021, The intragenesis and synthetic biology approach towards accelerating genetic gains on strawberry: development of new tools to improve fruit quality and resistance to pathogens, Plants, 11(1): 57. https://doi.org/10.3390/plants11010057 Taliansky M., Samarskaya V., Zavriev S., Fesenko I., Kalinina N., and Love A., 2021, RNA-based technologies for engineering plant virus resistance, Plants, 10(1): 82. https://doi.org/10.3390/plants10010082 Tapia R., Abd-Elrahman A., Osorio L., Whitaker V., and Lee S., 2022, Combining canopy reflectance spectrometry and genome-wide prediction to increase response to selection for powdery mildew resistance in cultivated strawberry, Journal of Experimental Botany, 73(15): 5322-5335. https://doi.org/10.1093/jxb/erac136 Xiao J.R., Chung P.C., Wu H.Y., Phan Q.H., Yeh J.L.A., and Hou M.T.K., 2020, Detection of strawberry diseases using a convolutional neural network, Plants, 10(1): 31. https://doi.org/10.3390/plants10010031 Yin K., and Qiu J.L., 2019, Genome editing for plant disease resistance: applications and perspectives, Philosophical Transactions of the Royal Society B, 374(1767): 20180322. https://doi.org/10.1098/rstb.2018.0322
RkJQdWJsaXNoZXIy MjQ4ODYzNA==