Molecular Pathogens 2024, Vol.15, No.4, 209-218 http://microbescipublisher.com/index.php/mp 217 Dixon L., Islam M., Nash R., and Reis A., 2019, African swine fever virus evasion of host defences, Virus Research, 266: 25-33. https://doi.org/10.1016/j.virusres.2019.04.002 Franzoni G., Pedrera M., and Sánchez-Cordón P., 2023, African swine fever virus infection and cytokine response in vivo: an update, Viruses, 15(1): 233. https://doi.org/10.3390/v15010233 Frączyk M., Woźniakowski G., Kowalczyk A., Bocian Ł., Kozak E., Niemczuk K., and Pejsak Z., 2016, Evolution of African swine fever virus genes related to evasion of host immune response, Veterinary Microbiology, 193: 133-144. https://doi.org/10.1016/j.vetmic.2016.08.018 Gallardo C., Sánchez E., Pérez-Núñez D., Nogal M., León P., Carrascosa Á., Nieto R., Soler A., Arias M., and Revilla Y., 2018, African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses, Vaccine, 36(19): 2694-2704. https://doi.org/10.1016/j.vaccine.2018.03.040 He W.R., Yuan J., Ma Y.H., Zhao C.Y., Yang Z.Y., Zhang Y.H., Han S.C., Wan B., and Zhang G.P., 2022, Modulation of host antiviral innate immunity by African swine fever virus: a review, Animals : an Open Access Journal from MDPI, 12(21): 2935. https://doi.org/10.3390/ani12212935 Hemmink J., Abkallo H., Henson S., Khazalwa E., Oduor B., Lacasta A., Okoth E., Riitho V., Fuchs W., Bishop R., and Steinaa L., 2022, The African swine fever isolate ASFV-Kenya-IX-1033 is highly virulent and stable after propagation in the Wild Boar Cell Line WSL, Viruses, 14(9): 1912. https://doi.org/10.3390/v14091912 Huang L., Liu H.Y., Ye G.Q., Liu X.H., Chen W.Y., Wang Z.L., Zhao D.M., Zhang Z.X., Feng C.Y., Hu L., Yu H.B., Zhou S.J., Zhang X.F., He X.J., Zheng J., Bu Z.G., Li J.N., and Weng C.J., 2023, Deletion of African swine fever virus (ASFV) H240R gene attenuates the virulence of ASFV by enhancing NLRP3-mediated inflammatory responses, Journal of Virology, 97(2): e01227-22. https://doi.org/10.1128/jvi.01227-22 Ju X.H., Li F., Li J.R., Wu C.Y., Xiang G.T., Zhao X.M., Nan Y.C., Zhao D.M., and Ding Q., 2021, Genome-wide transcriptomic analysis of highly virulent African swine fever virus infection reveals complex and unique virus host interaction, Veterinary Microbiology, 261: 109211. https://doi.org/10.1016/j.vetmic.2021.109211 Li J., Song J., Kang L., Huang L., Zhou S., Hu L., Zheng J., Li C., Zhang X., He X., Zhao D., Bu Z., and Weng C., 2021, pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production, PLoS Pathogens, 17(7): e1009733. https://doi.org/10.1371/journal.ppat.1009733 Li L., Fu J.Y., Li J.X., Guo S.B., Chen Q.C., Zhang Y.B., Liu Z.K., Tan C., Chen H.C., and Wang X.R., 2022, African swine fever virus pI215L inhibits Type I interferon signaling by targeting interferon regulatory factor 9 for autophagic degradation, Journal of Virology, 96(17): e00944-22. https://doi.org/10.1128/jvi.00944-22 Liu Y.N., Shen Z., Xie Z.H., Song Y., Li Y., Liang R., Gong L., Di D., Liu J., Liu J., Chen Z., Yu W., Lü L., Zhong Q., Liao X., Tian C., Wang R., Song Q., Wang H., Peng G., and Chen H.J., 2023, African swine fever virus I73R is a critical virulence-related gene: a potential target for attenuation, Proceedings of the National Academy of Sciences of the United States of America, 120(15): e2210808120. https://doi.org/10.1073/pnas.2210808120 Lü C.J., Zhang Q., Zhao L., Yang J.Y., Zou Z., Zhao Y., Li C.F., Sun X.M., Lin X., and Jin M.L., 2022, African swine fever virus infection activates inflammatory responses through downregulation of the anti-inflammatory molecule C1QTNF3, Frontiers in Immunology, 13: 1002616. https://doi.org/10.3389/fimmu.2022.1002616 Ranathunga L., Dodantenna N., Cha J., Chathuranga K., Chathuranga W., Weerawardhana A., Subasinghe A., Haluwana D., Gamage N., and Lee J., 2023, African swine fever virus B175L inhibits the type I interferon pathway by targeting STING and 2′3′-cGAMP, Journal of Virology, 97(11): e00795-23. https://doi.org/10.1128/jvi.00795-23 Sang H., Miller G., Lokhandwala S., Sangewar N., Waghela S., Bishop R., and Mwangi W., 2020, Progress toward development of effective and safe African swine fever virus vaccines, Frontiers in Veterinary Science, 7: 84. https://doi.org/10.3389/fvets.2020.00084 Sereda A., Kazakova A., Namsrayn S., Vlasov M., Sindryakova I., and Kolbasov D., 2023, Subsequent Immunization of Pigs with African Swine Fever Virus (ASFV) Seroimmunotype IV Vaccine Strain FK-32/135 and by Recombinant Plasmid DNA Containing the CD2v Derived from MK-200 ASFV Seroimmunotype III Strain Does Not Protect from Challenge with ASFV Seroimmunotype III, Vaccines, 11(5): 1007. https://doi.org/10.3390/vaccines11051007 Song R.S., Sun K., Wang Y.X., Liu S.K., and Bu Y.Y., 2024, Synthetic microbial communities: redesigning genetic pathways for enhanced functional synergy, Molecular Microbiology Research, 14(1): 39-48. https://doi.org/10.5376/mmr.2024.14.0005 Sun M.W., Yu S.X., Ge H.L., Wang T., Li Y.F., Zhou P.P., Pan L., Han Y., Yang Y.Y., Sun Y., Li S., Li L.F., and Qiu H.J., 2022, The A137R protein of African swine fever virus inhibits Type I interferon production via the autophagy-mediated lysosomal degradation of TBK1, Journal of Virology, 96(9): e01957-21. https://doi.org/10.1128/jvi.01957-21 Teklue T., Sun Y., Muhammad A., Luo Y., and Qiu H., 2020, Current status and evolving approaches to African swine fever vaccine development, Transboundary and Emerging Diseases, 67(2): 529-542. https://doi.org/10.1111/tbed.13364
RkJQdWJsaXNoZXIy MjQ4ODYzNA==