MP_2024v15n4

Molecular Pathogens 2024, Vol.15, No.4, 179-188 http://microbescipublisher.com/index.php/mp 187 Li M., Liu S.S., and Lin M.S., 2024, Bt toxin-receptor interactions: advances in understanding insect specificity, Bt Research, 15(1): 42-52. https://doi.org/10.5376/bt.2024.15.0005 Manghwar H., Hussain A., Ali Q., Saleem M., Abualreesh M., Alatawi A., Ali S., and Munis M., 2021, Disease severity resistance analysis and expression profiling of pathogenesis-related protein genes after the inoculation of fusarium equiseti in wheat, Agronomy, 11(11): 2124. https://doi.org/10.3390/agronomy11112124 Mapuranga J., Zhang N., Zhang L., Liu W., Chang J., and Yang W., 2022, Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars, Frontiers in Plant Science, 13: 951095. https://doi.org/10.3389/fpls.2022.951095 Michel S., Wagner C., Nosenko T., Steiner B., Samad-Zamini M., Buerstmayr M., Mayer K., and Buerstmayr H., 2021, Merging genomics and transcriptomics for predicting fusarium head blight resistance in wheat, Genes, 12(1): 114. https://doi.org/10.3390/genes12010114 Miedaner T., and Juroszek P., 2021, Climate change will influence disease resistance breeding in wheat in Northwestern Europe, TAG. Theoretical and Applied Genetics, Theoretische Und Angewandte Genetik, 134: 1771-1785. https://doi.org/10.1007/s00122-021-03807-0 Pang Y.L., Wu Y.Y., Liu C.X., Li W.H., Amand P., Bernardo A., Wang D.F., Dong L., Yuan X.F., Zhang H.R., Zhao M., Li L.Z., Wang L.M., He F., Liang Y.L., Yan Q., Lu Y., Su Y., Jiang H., Wu J.J., Li A., Kong L.G., Bai G., and Liu S.B., 2021, High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat, Theoretical and Applied Genetics, 134: 2857-2873. https://doi.org/10.1007/s00122-021-03863-6 Polturak G., Dippe M., Stephenson M., Misra R., Owen C., Ramírez-González R., Haidoulis J., Schoonbeek H., Chartrain L., Borrill P., Nelson D., Brown J., Nicholson P., Uauy C., and Osbourn A., 2022, Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat, Proceedings of the National Academy of Sciences of the United States of America, 119(16): e2123299119. https://doi.org/10.1073/pnas.2123299119 Poretti M., Sotiropoulos A.G., Graf J., Jung E., Bourras S., Krattinger S.G., and Wicker T., 2021, Comparative Transcriptome Analysis of Wheat lines in the field reveals multiple essential biochemical pathways suppressed by obligate pathogens, Frontiers in Plant Science, 12: 720462. https://doi.org/10.3389/fpls.2021.720462 Qi T., Zhu X., Tan C., Liu P., Guo J., Kang Z., and Guo J., 2017, Host‐induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust, Plant Biotechnology Journal, 16: 797-807. https://doi.org/10.1111/pbi.12829 Ramírez-González R., Segovia V., Bird N., Fenwick P., Holdgate S., Berry S., Jack P., Cáccamo M., and Uauy C., 2015, RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat, Plant Biotechnology Journal, 13(5): 613-624. https://doi.org/10.1111/pbi.12281 Saini D.K., Chahal A., Pal N., Srivastava P., and Gupta P.K., 2021, Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat (Triticum aestivumL.), Molecular Breeding, 42(3): 11. https://doi.org/10.1007/s11032-022-01282-z Seifi H., Serajazari M., Kaviani M., Pauls P., Booker H., and Navabi A., 2021, Immunity to stripe rust in wheat: A case study of a hypersensitive-response (HR)- independent resistance to Puccinia striiformis f. sp. tritici in Avocet-Yr15, Canadian Journal of Plant Pathology, 43: S188-S197. https://doi.org/10.1080/07060661.2021.1907448 Sharaf A., Nuc P., Ripl J., Alquicer G., Ibrahim E., Wang X., Maruthi M., and Kundu J., 2023, Transcriptome dynamics in triticum aestivum genotypes associated with resistance against the wheat dwarf virus, Viruses, 15(3): 689. https://doi.org/10.3390/v15030689 Singh R., Singh P., Rutkoski J., Hodson D., He X., Jørgensen L., Hovmøller M., and Huerta-Espino J., 2016, Disease Impact on Wheat Yield Potential and Prospects of Genetic Control., Annual review of phytopathology, 54: 303-322. https://doi.org/10.1146/annurev-phyto-080615-095835 Tyagi P., Singh D., Mathur S., Singh A., and Ranjan R., 2022, Upcoming progress of transcriptomics studies on plants: an overview, Frontiers in Plant Science, 13: 1030890. https://doi.org/10.3389/fpls.2022.1030890 Wang B., Sun Y., Song N., Zhao M., Liu R., Feng H., Wang X., and Kang Z., 2017, Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1) an important pathogenicity factor of Pst impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene, The New Phytologist, 215(1): 338-350. https://doi.org/10.1111/nph.14577

RkJQdWJsaXNoZXIy MjQ4ODYzNA==