MP_2024v15n4

Molecular Pathogens 2024, Vol.15, No.4, 170-178 http://microbescipublisher.com/index.php/mp 177 Inoue D., Hiroshima N., Nakamura S., Ishizawa H., and Ike M., 2022, Characterization of two novel predatory bacteria, Bacteriovorax stolpii HI3 and Myxococcus sp. MH1, isolated from a freshwater pond: prey range, and predatory dynamics and efficiency, Microorganisms, 10(9): 1816. https://doi.org/10.3390/microorganisms10091816 Johnke J., Boenigk J., Harms H., and Chatzinotas A., 2017, Killing the killer: predation between protists and predatory bacteria, FEMS Microbiology Letters, 364: fnx089. https://doi.org/10.1093/femsle/fnx089 Korp J., Gurovic M., and Nett M., 2016, Antibiotics from predatory bacteria, Beilstein Journal of Organic Chemistry, 12: 594-607. https://doi.org/10.3762/bjoc.12.58 Laloux G., 2020, Shedding light on the cell biology of the predatory bacteriumBdellovibrio bacteriovorus, Frontiers in Microbiology, 10: 3136. https://doi.org/10.3389/fmicb.2019.03136 Liu X.H., and Zhang J., 2024, CRISPR-Cas9 technology in Bt genome editing and functional studies, Bt Research, 15(2): 53-64. https://doi.org/10.5376/bt.2024.15.0006 Livingstone P., Morphew R., Cookson A., and Whitworth D., 2018, Genome analysis, metabolic potential, and predatory capabilities of Herpetosiphon llansteffanense sp. nov, Applied and Environmental Microbiology, 84(22): e01040-18. https://doi.org/10.1128/AEM.01040-18 Madhusoodanan J., 2019, Inner workings: probing predatory bacteria as an antibacterial remedy, Proceedings of the National Academy of Sciences, 116: 22887-22890. https://doi.org/10.1073/pnas.1917513116 Makowski L., Trojanowski D., Till R., Lambert C., Lowry R., Sockett R., and Zakrzewska‐Czerwińska J., 2019, Dynamics of chromosome replication and its relationship to predatory attack lifestyles in Bdellovibrio bacteriovorus, Applied and Environmental Microbiology, 85(14):1-14. https://doi.org/10.1128/AEM.00730-19 Mitchell R., Mun W., Mabekou S., Jang H., and Choi S., 2020, Compounds affecting predation by and viability of predatory bacteria, Applied Microbiology and Biotechnology, 104: 3705-3713. https://doi.org/10.1007/s00253-020-10530-1 Mu D., Wang S., Liang Q., Du Z., Tian R., Ouyang Y., Wang X., Zhou A., Gong Y., Chen G., Nostrand J., Yang Y., Zhou J., and Du Z., 2020, Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments, Microbiome, 8: 126. https://doi.org/10.1186/s40168-020-00902-0 Nair R., Vasse M., Wielgoss S., Sun L., Yu Y., and Velicer G., 2019, Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences, Nature Communications, 10: 4301. https://doi.org/10.1038/s41467-019-12140-6 Negus D., Moore C., Baker M., Raghunathan D., Tyson J., and Sockett R., 2017, Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting? Annual Review of Microbiology, 71: 441-457. https://doi.org/10.1146/annurev-micro-090816-093618 Osińska M., Nowakiewicz A., Zięba P., Gnat S., and Łagowski D., 2020, Wildlife omnivores and herbivores as a significant vehicle of multidrug-resistant and pathogenic Escherichia coli strains in environment, Environmental Microbiology Reports, 12(6): 712-717. https://doi.org/10.1111/1758-2229.12886 Pérez J., Moraleda-Muñoz A., Marcos-Torres F., and Muñoz-Dorado J., 2016, Bacterial predation: 75 years and counting! Environmental Microbiology, 18(3): 766-779. https://doi.org/10.1111/1462-2920.13171 Shatzkes K., Singleton E., Tang C., Zuena M., Shukla S., Gupta S., Dharani S., Rinaggio J., Kadouri D., and Connell N., 2017, Examining the efficacy of intravenous administration of predatory bacteria in rats, Scientific Reports, 7: 1864. https://doi.org/10.1038/s41598-017-02041-3 Shatzkes K., Singleton E., Tang C., Zuena M., Shukla S., Gupta S., Dharani S., Onyile O., Rinaggio J., Connell N., and Kadouri D., 2016, Predatory bacteria attenuate Klebsiella pneumoniae Burden in Rat Lungs, mBio, 7(6): 1-9. https://doi.org/10.1128/mBio.01847-16 Song R.S., Sun K., Wang Y.X., Liu S.K., and Bu Y.Y., 2024, Synthetic microbial communities: redesigning genetic pathways for enhanced functional synergy, Molecular Microbiology Research, 14(1): 39-48. https://doi.org/10.5376/mmr.2024.14.0005 Summers J., and Kreft J., 2022, The role of mathematical modelling in understanding prokaryotic predation, Frontiers in Microbiology, 13: 1037407. https://doi.org/10.3389/fmicb.2022.1037407 Sydney N., Swain M., So J., Hoiczyk E., Tucker N., and Whitworth D., 2021, The genetics of prey susceptibility to myxobacterial predation: a review, including an investigation into Pseudomonas aeruginosa mutations affecting predation by Myxococcus xanthus, Microbial Physiology, 31(2): 57-66. https://doi.org/10.1159/000515546 Tyson J., and Sockett R., 2017, Predatory bacteria: moving from curiosity towards curative, Trends in Microbiology, 25(2): 90-91. https://doi.org/10.1016/j.tim.2016.12.011

RkJQdWJsaXNoZXIy MjQ4ODYzNA==