MP_2024v15n3

Molecular Pathogens 2024, Vol.15, No.3, 142-154 http://microbescipublisher.com/index.php/mp 153 Liu J., Fernandes H., Zamany A., Sikorski M., Jaskólski M., and Sniezko R., 2021, In-vitro anti-fungal assay and association analysis reveal a role for the Pinus monticola PR10 gene (PmPR10-3.1) in quantitative disease resistance to white pine blister rust, Genome, 64(7): 693-704. https://doi.org/10.1139/gen-2020-0080 Liu J.J., Schoettle A.W., Sniezko R.A., Waring K., Williams H., Zamany A., Johnson J.S., and Kegley A., 2021, Comparative association mapping reveals conservation of major gene resistance to white pine blister rust in southwestern white pine (Pinus strobiformis) and limber pine, 112(5): 1093-1102. https://doi.org/10.1094/PHYTO-09-21-0382-R Liu J., Schoettle A., Sniezko R., Yao F., Zamany A., Williams H., and Rancourt B., 2019, Limber pine (Pinus flexilis James) genetic map constructed by exome-seq provides insight into the evolution of disease resistance and a genomic resource for genomics-based breeding, The Plant Journal: For Cell and Molecular Biology, 98(4): 745-758. https://doi.org/10.1111/tpj.14270 Liu J., Williams H., Zamany A., Li X.R., Gellner S., and Sniezko R., 2020, Development and application of marker-assisted selection (MAS) tools for breeding of western white pine (Pinus monticola Douglas ex D. Don) resistance to blister rust (Cronartium ribicola JC Fisch.) in British Columbia, Canadian Journal of Plant Pathology, 42(2): 250-259. https://doi.org/10.1080/07060661.2019.1638454 Liu Q., Wei Y., Xu L., Hao Y., Chen X., and Zhou Z., 2017, Transcriptomic profiling reveals differentially expressed genes associated with pine wood nematode resistance in masson pine (Pinus massoniana Lamb), Scientific Reports, 7(1): 4693. https://doi.org/10.1038/s41598-017-04944-7 Modesto I., Mendes A., Carrasquinho I., and Miguel C., 2022, Molecular defense response of pine trees (Pinus spp.) to the parasitic nematode bursaphelenchus xylophilus, Cells, 11(20): 3208. https://doi.org/10.3390/cells11203208 Modesto I., Sterck L., Arbona V., Gómez-Cadenas A., Carrasquinho I., van de Peer Y., and Miguel C., 2021, Insights into the mechanisms implicated in pinus pinaster resistance to pinewood nematode, Frontiers in Plant Science, 12: 690857. https://doi.org/10.3389/fpls.2021.690857 Mukrimin M., Kovalchuk A., Ghimire R., Kivimäenpää M., Sun H., Holopainen J., and Asiegbu F., 2019, Evaluation of potential genetic and chemical markers for Scots pine tolerance against Heterobasidion annosuminfection, Planta, 250: 1881-1895. https://doi.org/10.1007/s00425-019-03270-8 Pandit K., Smith J., Quesada T., Villari C., and Johnson D.J., 2020, Association of recent incidence of foliar disease in pine species in the southeastern united states with tree and climate variables, Forests, 11(11): 1155. https://doi.org/10.3390/f11111155 Park J., Jeon H.W., Jung H., Lee H.H., Kim J., Park A., Kim N., Han G., Kim J.C., and Seo Y., 2020, Comparative transcriptome analysis of pine trees treated with resistance-inducing substances against the nematode bursaphelenchus xylophilus, Genes, 11(9): 1000. https://doi.org/10.3390/genes11091000 Raitelaitytė K., Rutkauskas A., Radzijevskaja J., Žukauskienė J., Markovskaja S., and Paulauskas A., 2017, The fungal pathogens causing diseases in pines, Biologija, 62: 4. https://doi.org/10.6001/BIOLOGIJA.V62I4.3414 Rigg J., Offord C., Zimmer H., Anderson I., Singh B., and Powell J., 2017, Conservation by translocation: establishment of Wollemi pine and associated microbial communities in novel environments, Plant and Soil, 411: 209-225. https://doi.org/10.1007/s11104-016-3010-2 Robischon M., 2016, Potential environmental impact of insect-resistant transgenic trees, In Gene Flow: Monitoring Modeling and Mitigation, 82: 173-194. https://doi.org/10.1007/978-94-017-7531-1_9 Sniezko R., and Koch J., 2017, Breeding trees resistant to insects and diseases: putting theory into application, Biological Invasions, 19: 3377-3400. https://doi.org/10.1007/s10530-017-1482-5 Sniezko R., Kegley A., and Savin D., 2017, Ex situ genetic conservation potential of seeds of two high elevation white pines, New Forests, 48: 245-261. https://doi.org/10.1007/s11056-017-9579-3 Vicente C.S.L., Soares M., Faria J.M.S., Ramos A.P., and Inácio M., 2021, Insights into the role of fungi in pine wilt disease, Journal of Fungi, 7(9): 780. https://doi.org/10.3390/jof7090780 Visser E., Kampmann T.P., Wegrzyn J., and Naidoo S., 2022, Multispecies comparison of host responses to Fusariumcircinatum challenge in tropical pines show consistency in resistance mechanisms, Plant Cell and Environment, 46(5): 1705-1725. https://doi.org/10.1111/pce.14522 Voronova A., Rendón-Anaya M., Ingvarsson P., Kalendar R., and Ruņģis D., 2020, Comparative study of pine reference genomes reveals transposable element interconnected gene networks, Genes, 11(10): 1216. https://doi.org/10.3390/genes11101216 Wang X.Y., Wu X.Q., Wen T.Y., Feng Y., and Zhang Y., 2023, Transcriptomic analysis reveals differentially expressed genes associated with pine wood nematode resistance in resistant Pinus thunbergii, Tree Physiology, 43(6): 995-1008. https://doi.org/10.1093/treephys/tpad018

RkJQdWJsaXNoZXIy MjQ4ODYzNA==