MP_2024v15n3

Molecular Pathogens 2024, Vol.15, No.3, 129-141 http://microbescipublisher.com/index.php/mp 140 Kom I., Biesmeijer J., and Aguirre‐Gutiérrez J., 2019, Risk of potential pesticide use to honeybee and bumblebee survival and distribution: a country‐wide analysis for The Netherlands, Diversity and Distributions, 25(11): 1709-1720. https://doi.org/10.1111/ddi.12971 Kushwaha D., Teja K., Kumar N., Aman A., Kumar A., Jaiswal S., Bajpeyi M., and Khan A., 2023, Diseases and pests harmful to honeybees (Apis spp.) and their management tactics: a review, International Journal of Environment and Climate Change, 13(11): 95-109. https://doi.org/10.9734/ijecc/2023/v13i113149 Lin Z., Shen S., Wang K., and Ji T., 2023, Biotic and abiotic stresses on honeybee health, Integrative zoology, 19(3): 442-457. https://doi.org/10.1111/1749-4877.12752 Lupi D., Mesiano M., Adani A., Benocci R., Giacchini R., Parenti P., Zambon G., Lavazza A., Boniotti M., Bassi S., Colombo M., and Tremolada P., 2021, Combined effects of pesticides and electromagnetic-fields on honeybees: multi-stress exposure, Insects, 12(8): 716. https://doi.org/10.3390/insects12080716 Martin S., Highfield A., Brettell L., Villalobos E., Budge G., Powell M., Nikaido S., and Schroeder D., 2012, Global honey bee viral landscape altered by a parasitic mite, Science, 336(6086): 1304-1306. https://doi.org/10.1126/science.1220941 Mondet F., Beaurepaire A., McAfee A., Locke B., Alaux C., Blanchard S., Danka B., and Conte Y., 2020, Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts, International Journal for Parasitology, 50(6-7): 433-447. https://doi.org/10.20944/preprints202004.0138.v1 Moorthy V,M., Pandey R., and Mall P., 2023, Protecting honeybees from pesticides: a call to action, Biodiversity, 24(3): 117-123. https://doi.org/10.1080/14888386.2023.2230181 Morales M., Ramos M., Vázquez P., Galiano F., Valverde M., López V., Flores J., and Fernández-Alba A., 2019, Distribution of chemical residues in the beehive compartments and their transfer to the honeybee brood, Science of the Total Environment, 710: 136288. https://doi.org/10.1016/j.scitotenv.2019.136288 Muli E., Patch H., Frazier M., Frazier J., Torto B., Baumgarten T., Kilonzo J., Kimani J., Mumoki F., Masiga D., Tumlinson J., and Grozinger C., 2014, Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa, PLoS ONE, 9(4): e94459. https://doi.org/10.1371/journal.pone.0094459 Murcia-Morales M., Díaz-Galiano F., Vejsnæs F., Kilpinen O., Steen J., and Fernández-Alba A., 2021, Environmental monitoring study of pesticide contamination in Denmark through honey bee colonies using APIStrip-based sampling, Environmental Pollution, 290: 117888. https://doi.org/10.1016/j.envpol.2021.117888 Murcia-Morales M., Steen J., Vejsnæs F., Díaz-Galiano F., Flores J., and Fernández-Alba A., 2020, APIStrip, a new tool for environmental contaminant sampling through honeybee colonies, Science of the Total Environment, 729: 138948. https://doi.org/10.1016/j.scitotenv.2020.138948 Nazzi F., Brown S., Annoscia D., Piccolo F., Prisco G., Varricchio P., Vedova G., Cattonaro F., Caprio E., and Pennacchio F., 2012, Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies, PLoS Pathogens, 8(6): e1002735. https://doi.org/10.1371/journal.ppat.1002735 Oliveira R., Queiroz S., Luz C., Porto R., and Rath S., 2016, Bee pollen as a bioindicator of environmental pesticide contamination, Chemosphere, 163: 525-534. https://doi.org/10.1016/j.chemosphere.2016.08.022 O’Neal S., Anderson T., and Wu-Smart J., 2018, Interactions between pesticides and pathogen susceptibility in honey bees, Current Opinion in Insect Science, 26: 57-62. https://doi.org/10.1016/j.cois.2018.01.006 Pirk C., Strauss U., Yusuf A., Démares F., and Human H., 2016, Honeybee health in Africa—a review, Apidologie, 47: 276-300. https://doi.org/10.1007/s13592-015-0406-6 Requier F., Odoux J., Tamic T., Moreau N., Henry M., Decourtye A., and Bretagnolle V., 2015, Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds, Ecological Applications, 25(4): 881-890. https://doi.org/10.1890/14-1011.1 Roberts J., Anderson D., and Durr P., 2017, Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses, Scientific Reports, 7(1): 6925. https://doi.org/10.1038/s41598-017-07290-w Samuelson A., Gill R., and Leadbeater E., 2020, Urbanisation is associated with reduced Nosema sp. infection, higher colony strength and higher richness of foraged pollen in honeybees, Apidologie, 51(5): 746-762. https://doi.org/10.1007/s13592-020-00758-1 Siviter H., Koricheva J., Brown M., and Leadbeater E., 2018, Quantifying the impact of pesticides on learning and memory in bees, Journal of Applied Ecology, 55(6): 2812-2821. https://doi.org/10.1111/1365-2664.13193 Siviter H., Bailes E., Martin C., Oliver T., Koricheva J., Leadbeater E., and Brown M., 2021, Agrochemicals interact synergistically to increase bee mortality, Nature, 596(7872): 389-392. https://doi.org/10.1038/s41586-021-03787-7

RkJQdWJsaXNoZXIy MjQ4ODYzNA==