MP_2024v15n3

Molecular Pathogens 2024, Vol.15, No.3, 129-141 http://microbescipublisher.com/index.php/mp 139 Becher M., Twiston‐Davies G., Penny T., Goulson D., Rotheray E., and Osborne J., 2018, Bumble‐BEEHAVE: a systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level, Journal of Applied Ecology, 55(6): 2790-2801. https://doi.org/10.1111/1365-2664.13165 Belsky J., and Joshi N., 2019, Impact of biotic and abiotic stressors on managed and feral bees, Insects, 10(8): 233. https://doi.org/10.3390/insects10080233 Botías C., Jones J., Pamminger T., Bartomeus I., Hughes W., and Goulson D., 2020, Multiple stressors interact to impair the performance of bumblebee (Bombus terrestris) colonies, The Journal of Animal Ecology, 90(2): 415-431. https://doi.org/10.1111/1365-2656.13375 Cabirol A., and Haase A., 2019, The neurophysiological bases of the impact of neonicotinoid pesticides on the behaviour of honeybees, Insects, 10(10): 344. https://doi.org/10.3390/insects10100344 Căuia E., Siceanu A., Vișan G., Căuia D., Colța T., and Spulber R., 2020, Monitoring the field-realistic exposure of honeybee colonies to neonicotinoids by an integrative approach: a case study in Romania, Diversity, 12(1): 24. https://doi.org/10.3390/d12010024 Centrella, M., Russo, L., Ramírez, N., Eitzer, B., Dyke, M., Danforth, B., and Poveda, K., 2020, Diet diversity and pesticide risk mediate the negative effects of land use change on solitary bee offspring production. Journal of Applied Ecology, 57, 1031-1042. https://doi.org/10.1111/1365-2664.13600 Chan D., and Raine N., 2021, Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo), Scientific Reports, 11(1): 4241. https://doi.org/10.1038/s41598-021-83341-7 Cornelissen B., Neumann P., and Schweiger O., 2019, Global warming promotes biological invasion of a honey bee pest, Global Change Biology, 25(11): 3642-3655. https://doi.org/10.1111/gcb.14791 Crall J., Switzer C., Myers S., Combes S., and Bivort B., 2017, Pesticides and pollinators, an automated platform to assess the effects of neonicotinoid exposure and other environmental stressors on bee colonies: a computational, ethological study, The Lancet, 389: S4. https://doi.org/10.1016/S0140-6736(17)31116-9 Daniele G., Giroud B., Jabot C., and Vulliet E., 2018, Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS, Environmental Science and Pollution Research, 25: 6145-6153. https://doi.org/10.1007/s11356-017-9227-7 Doublet V., Labarussias M., Miranda J., Moritz R., and Paxton R., 2015, Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle, Environmental Microbiology, 17(4): 969-983. https://doi.org/10.1111/1462-2920.12426 García-Valcárcel A., Martínez-Ferrer M., Campos-Rivela J., and Guil M., 2019, Analysis of pesticide residues in honeybee (Apis mellifera L.) and in corbicular pollen. Exposure in citrus orchard with an integrated pest management system, Talanta, 204: 153-162. https://doi.org/10.1016/j.talanta.2019.05.106 Giacobino A., Molineri A., Pacini A., Fondevila N., Pietronave H., Rodríguez G., Palacio A., Cagnolo N., Orellano E., Salto C., Signorini M., and Merke J., 2016, Varroa destructor and viruses association in honey bee colonies under different climatic conditions, Environmental Microbiology Reports, 8(3): 407-412. https://doi.org/10.1111/1758-2229.12410 Gill R., and Raine N., 2014, Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure, Functional Ecology, 28(6): 1459-1471. https://doi.org/10.1111/1365-2435.12292 Goulson D., Nicholls E., Botías C., and Rotheray E., 2015, Bee declines driven by combined stress from parasites, pesticides, and lack of flowers, Science, 347(6229): 1255957. https://doi.org/10.1126/science.1255957 Grassl J., Holt S., Cremen N., Peso M., Hahne D., and Baer B., 2018, Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity, Journal of Invertebrate Pathology, 159: 78-86. https://doi.org/10.1016/j.jip.2018.10.005 Grindrod I., and Martin S., 2021, Parallel evolution of Varroa resistance in honey bees: a common mechanism across continents? Proceedings of the Royal Society B: Biological Sciences, 288(1956): 20211375. https://doi.org/10.1098/rspb.2021.1375 Halvorson K., Baumung R., Leroy G., Chen C., and Boettcher P., 2021, Protection of honeybees and other pollinators: one global study, Apidologie, 52(3): 535-547. https://doi.org/10.1007/s13592-021-00841-1 Jones L., Brennan G., Lowe A., Creer S., Ford C., and Vere N., 2021, Shifts in honeybee foraging reveal historical changes in floral resources, Communications Biology, 4(1): 37. https://doi.org/10.1038/s42003-020-01562-4 Kasiotis K., Zafeiraki E., Kapaxidi E., Manea-Karga E., Antonatos S., Anastasiadou P., Milonas P., and Machera K., 2021, Pesticides residues and metabolites in honeybees: a Greek overview exploring Varroaand Nosema potential synergies, Science of the Total Environment, 769: 145213. https://doi.org/10.1016/j.scitotenv.2021.145213

RkJQdWJsaXNoZXIy MjQ4ODYzNA==