MP_2024v15n3

Molecular Pathogens 2024, Vol.15, No.3, 106-118 http://microbescipublisher.com/index.php/mp 118 Luo M., Xie L., Chakraborty S., Wang A., Matny O., Jugovich M., Kolmer J., Richardson T., Bhatt D., Hoque M., Patpour M., Sørensen C., Ortiz D., Dodds P., Steuernagel B., Wulff B., Upadhyaya N., Mago R., Periyannan S., Lagudah E., Freedman R., Reuber T., Steffenson B., and Ayliffe M., 2021, A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat, Nature Biotechnology, 39: 561-566. https://doi.org/10.1038/s41587-020-00770-x Mapuranga J., Zhang N., Zhang L., Liu W., Chang J., and Yang W., 2022, Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars, Frontiers in Plant Science, 13: 951095. https://doi.org/10.3389/fpls.2022.951095 Maré A., Boshoff W., and Herselman L., 2020, Molecular breeding of wheat lines for multiple rust and Fusarium head blight resistance, Euphytica, 216: 163. https://doi.org/10.1007/s10681-020-02697-5 Merrick L., Burke A., Chen X., and Carter A., 2021, Breeding with major and minor genes: genomic selection for quantitative disease resistance, Frontiers in Plant Science, 12: 713667. https://doi.org/10.3389/fpls.2021.713667 Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. https://doi.org/10.1094/PHYTO-05-11-0157 Miedaner T., Boeven A., Gaikpa D., Kistner M., and Grote C., 2020, Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize, International Journal of Molecular Sciences, 21(24): 9717. https://doi.org/10.3390/ijms21249717 Mondal S., Rutkoski J., Velu G., Singh P., Crespo-Herrera L., Guzmán C., Bhavani S., Lan C.X., He X.Y., and Singh R.P., 2016, Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches, Frontiers in Plant Science, 7: 991. https://doi.org/10.3389/fpls.2016.00991 Nelson, R., Wiesner-Hanks, T., Wisser R., and Balint-Kurti P., 2017, Navigating complexity to breed disease-resistant crops, Nature Reviews Genetics, 19: 21-33. https://doi.org/10.1038/nrg.2017.82 Rutkoski J., Heffner E., and Sorrells M., 2011, Genomic selection for durable stem rust resistance in wheat, Euphytica, 179: 161-173. https://doi.org/10.1007/s10681-010-0301-1 Stirnweis D., Milani S., Brunner S., Herren G., Buchmann G., Peditto D., Jordan T., and Keller B., 2014, Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants, The Plant Journal : for Cell and Molecular Biology, 79(6): 893-903. https://doi.org/10.1111/tpj.12592 Summers R., and Brown J., 2013, Constraints on breeding for disease resistance in commercially competitive wheat cultivars, Plant Pathology, 62: 115-121. https://doi.org/10.1111/PPA.12165 Poland J., and Rutkoski J., 2016, Advances and challenges in genomic selection for disease resistance, Annual Review of Phytopathology, 54: 79-98. https://doi.org/10.1146/annurev-phyto-080615-100056 Wessels E., and Botes W., 2014, Accelerating resistance breeding in wheat by integrating marker-assisted selection and doubled haploid technology, South African Journal of Plant and Soil, 31: 35-43. https://doi.org/10.1080/02571862.2014.903434

RkJQdWJsaXNoZXIy MjQ4ODYzNA==