MP_2024v15n2

Molecular Pathogens 2024, Vol.15, No.2, 93-105 http://microbescipublisher.com/index.php/mp 103 Campos M., Patanita M., Campos C., Materatski P., Varanda C., Brito I., and Félix M., 2019,). Detection and quantification of Fusariumspp. (F. oxysporum, F. verticillioides, F. graminearum) and Magnaporthiopsis maydis in maize using real-time PCR targeting the its region, Agronomy, 9(2): 45. https://doi.org/10.3390/AGRONOMY9020045 Chang X., Wei D., Zeng Y., Zhao X., Hu Y., Wu X., Song C., Gong G., Chen H., Yang C., Zhang M., Liu T., Chen W., and Yang W., 2022, Maize-soybean relay strip intercropping reshapes the rhizosphere bacterial community and recruits beneficial bacteria to suppress Fusarium root rot of soybean, Frontiers in Microbiology, 13: 1009689. https://doi.org/10.3389/fmicb.2022.1009689 Cobo-Díaz J., Baroncelli R., Floch G., and Picot A., 2019, Combined metabarcoding and co-occurrence network analysis to profile the bacterial, fungal and fusariumcommunities and their interactions in maize stalks, Frontiers in Microbiology, 10: 261. https://doi.org/10.3389/fmicb.2019.00261 Conceição R., Simeone M., Queiroz V., Medeiros E., Araújo J., Coutinho W., Silva D., Miguel R., Lana U., and Stoianoff M., 2020, Application of near-infrared hyperspectral (NIR) images combined with multivariate image analysis in the differentiation of two mycotoxicogenic Fusarium species associated with maize, Food Chemistry, 344: 128615. https://doi.org/10.1016/j.foodchem.2020.128615 Czarnecka D., Czubacka A., Agacka‐Mołdoch M., Trojak-Goluch A., and Księżak J., 2022, The occurrence of fungal diseases in maize in organic farming versus an integrated management system, Agronomy, 12(3): 558. https://doi.org/10.3390/agronomy12030558 Czembor E., Stępień Ł., and Waśkiewicz A., 2015, Effect of environmental factors on Fusariumspecies and associated mycotoxins in maize grain grown in Poland, PLoS ONE, 10(7): e0133644. https://doi.org/10.1371/journal.pone.0133644 Czembor E., Stępień Ł., and Waśkiewicz A., 2014, Fusariumtemperatum as a new species causing ear rot on maize in Poland, Plant disease, 98(7): 1001. https://doi.org/10.1094/PDIS-11-13-1184-PDN Drakopoulos D., Kägi A., Six J., Zorn A., Wettstein F., Bucheli T., Forrer H., and Vogelgsang S., 2021, The agronomic and economic viability of innovative cropping systems to reduce Fusariumhead blight and related mycotoxins in wheat, Agricultural Systems, 192: 103198. https://doi.org/10.1016/j.agsy.2021.103198 Ferrigo D., Raiola A., and Causin R., 2016, Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management, Molecules, 21(5): 627. https://doi.org/10.3390/molecules21050627 Gil S., Meriles J., Haro R., Casini C., and March G., 2008, Crop rotation and tillage systems as a proactive strategy in the control of peanut fungal soilborne diseases, BioControl, 53: 685-698. https://doi.org/10.1007/s10526-007-9105-1 Glenn A., 2007, Mycotoxigenic Fusariumspecies in animal feed, Animal Feed Science and Technology, 137: 213-240. https://doi.org/10.1016/J.ANIFEEDSCI.2007.06.003 Gordani A., Hijazi B., Dimant E., and Degani O., 2023, Integrated biological and chemical control against the maize late wilt agent magnaporthiopsis maydis, Soil Systems, 7(1): 1. https://doi.org/10.3390/soilsystems7010001 Govaerts B., Mezzalama M., Sayre K., Crossa J., Lichter K., Troch V., Vanherck K., Corte P., and Deckers J., 2008, Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands, Applied Soil Ecology, 38: 197-210. https://doi.org/10.1016/J.APSOIL.2007.10.009 Guimarães R., Pherez-Perrony P., Muller H., Berg G., Medeiros F., and Cernava T., 2020, Microbiome-guided evaluation of Bacillus subtilis BIOUFLA2 application to reduce mycotoxins in maize kernels, Biological Control, 150; 104370. https://doi.org/10.1016/j.biocontrol.2020.104370. Henry P., Koehler S., Kaur S., Epstein L., Mitchell J., Gordon T., and Leveau J., 2022, Amplicon sequencing of Fusarium translation elongation factor 1α reveals that soil communities of Fusariumspecies are resilient to disturbances caused by crop and tillage practices, Phytobiomes Journal, 6(3): 261-274. https://doi.org/10.1094/pbiomes-09-21-0053-r Lori G., Sisterna M., Sarandón S., Rizzo I., and Chidichimo H., 2009, Fusariumhead blight in wheat: Impact of tillage and other agronomic practices under natural infection, Crop Protection, 28: 495-502. https://doi.org/10.1016/J.CROPRO.2009.01.012 Madege R., Audenaert K., Kimanya M., Tiisekwa B., Meulenaer B., Bekaert B., Landschoot S., and Haesaert G., 2018, Control of Fusarium verticillioides (Sacc.) nirenberg and fumonisins by using a combination of crop protection products and fertilization, Toxins, 10(2): 67. https://doi.org/10.3390/toxins10020067 Magarini A., Passera A., Ghidoli M., Casati P., and Pilu R., 2023, Genetics and environmental factors associated with resistance to Fusariumgraminearum, the causal agent of gibberella ear rot in maize, Agronomy, 13(7): 1836. https://doi.org/10.3390/agronomy13071836

RkJQdWJsaXNoZXIy MjQ4ODYzNA==