MP_2024v15n2

Molecular Pathogens 2024, Vol.15, No.2, 72-82 http://microbescipublisher.com/index.php/mp 82 Reverter M., Tapissier-Bontemps N., Sarter S., Sasal P., and Caruso D., 2020, Moving towards more sustainable aquaculture practices: a meta‐analysis on the potential of plant‐enriched diets to improve fish growth immunity and disease resistance, Reviews in Aquaculture, 13(1): 537-555. https://doi.org/10.1111/raq.12485 Robledo D., Palaiokostas C., Bargelloni L., Martínez P., and Houston R., 2017, Applications of genotyping by sequencing in aquaculture breeding and genetics, Reviews in Aquaculture, 10: 670 - 682. https://doi.org/10.1111/raq.12193 Stärk K., Pękala A., and Muellner P., 2019, Use of molecular and genomic data for disease surveillance in aquaculture: Towards improved evidence for decision making., Preventive veterinary medicine, 167: 190-195. https://doi.org/10.1016/j.prevetmed.2018.04.011 Teagle H., Hawkins S., Moore P., and Smale D., 2017, The role of kelp species as biogenic habitat formers in coastal marine ecosystems, Journal of Experimental Marine Biology and Ecology, 492: 81-98. https://doi.org/10.1016/J.JEMBE.2017.01.017 Vollmers J., Frentrup M., Rast P., Jogler C., and Kaster A., 2017, Untangling genomes of novel planctomycetal and verrucomicrobial species from monterey bay kelp forest metagenomes by refined binning, Frontiers in Microbiology, 8: 472. https://doi.org/10.3389/fmicb.2017.00472 Weigel B., and Pfister C., 2019, Successional dynamics and seascape-level patterns of microbial communities on the canopy-forming kelps Nereocystis luetkeana and Macrocystis pyrifera, Frontiers in Microbiology, 10: 346. https://doi.org/10.3389/fmicb.2019.00346 Weigel B., Miranda K., Fogarty E., Watson A., and Pfister C., 2022, Functional insights into the kelp microbiome from metagenome-assembled genomes, mSystems, 7(3): e01422-21. https://doi.org/10.1128/msystems.01422-21 Wu W., Li L., Liu Y., Huang T., Liang W., and Chen M., 2019, Multiomics analyses reveal that NOD-like signaling pathway plays an important role against Streptococcus agalactiae in the spleen of tilapia., Fish and shellfish immunology, 95: 336-348. https://doi.org/10.1016/j.fsi.2019.10.007 Xing Q., Bernard M., Rousvoal S., Corre E., Markov G., Peters A., and Leblanc C., 2021, Different early responses of laminariales to an endophytic infection provide insights about kelp host specificity, Frontiers in Marine Science, 8: 742469. https://doi.org/10.3389/fmars.2021.742469 Ye M., Jin C., Liu X., Tan X., Ye Y., and Du Z., 2022, Description and genomic characterization of Oceaniferula flavus sp. nov., a novel potential polysaccharide-degrading candidate of the difficult-to-cultivate phylum verrucomicrobiota isolated from seaweed, Marine Drugs, 21(1): 31. https://doi.org/10.3390/md21010031 Ye Y., Hao Z., Yue Y., Ma L., Ye M., and Du Z., 2022, Characterization of Kordiimonas marina sp. nov. and Kordiimonas laminariae sp. nov. and comparative genomic analysis of the genus Kordiimonas a marine-adapted taxon, Frontiers in Marine Science, 9: 919253. https://doi.org/10.3389/fmars.2022.919253 Zhang N., Zhang L., Tao Y., Guo L., Sun J., Li X., Zhao N., Peng J., Li X., Zeng L., Chen J., and Yang G., 2015, Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus, BMC Genomics, 16: 1-11. https://doi.org/10.1186/s12864-015-1371-1 Zhou Q., Su Z., Li Y., Liu Y., Wang L., Lu S., Wang S., Gan T., Liu F., Zhou X., Wei M., Liu G., and Chen S., 2019, Genome-wide association mapping and gene expression analyses reveal genetic mechanisms of disease resistance variations in Cynoglossus semilaevis, Frontiers in Genetics ,10: 1167. https://doi.org/10.3389/fgene.2019.01167

RkJQdWJsaXNoZXIy MjQ4ODYzNA==