Molecular Pathogens 2024, Vol.15, No.1, 40-49 http://microbescipublisher.com/index.php/mp 49 Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. https://doi.org/10.1094/PHYTO-05-11-0157 Najafi S., Bertini E., D'Incà E., Fasoli M., and Zenoni S., 2022, DNA-free genome editing in grapevine using CRISPR/Cas9 ribonucleoprotein complexes followed by protoplast regeneration, Horticulture Research, 10(1): uhac240. https://doi.org/10.1093/hr/uhac240Pang Y., Wu Y., Liu C., Li W., Amand P., Bernardo A., Wang D., Dong L., Yuan X., Zhang H., Zhao M., Li L., Wang L., He F., Liang Y., Yan Q., Lu Y., Su Y., Jiang H., Wu J., Li A., Kong L., Bai G., and Liu S., 2021, High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat, Theoretical and Applied Genetics, 134: 2857-2873. https://doi.org/10.1007/s00122-021-03863-6 Peressotti E., Wiedemann-Merdinoglu S., Delmotte F., Bellin D., Gaspero G., Testolin R., Merdinoglu D., and Mestre P., 2010, Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety, BMC Plant Biology, 10: 147. https://doi.org/10.1186/1471-2229-10-147 Pirrello C., Magon G., Palumbo F., Farinati S., Lucchin M., Barcaccia G., and Vannozzi A., 2022, Past, present and future of genetic strategies to control tolerance to the main fungal and oomycete pathogens in grapevine, Journal of Experimental Botany, 74(5): 1309-1330. https://doi.org/10.1093/jxb/erac487 Pirrello C., Zeilmaker T., Bianco L., Giacomelli L., Moser C., and Vezzulli S., 2021, Mining grapevine downy mildew susceptibility genes: a resource for genomics-based breeding and tailored gene editing, Biomolecules, 11(2): 181. https://doi.org/10.3390/biom11020181 Poland J., and Rutkoski J., 2016, Advances and challenges in genomic selection for disease resistance, Annual Review of Phytopathology, 54: 79-98. https://doi.org/10.1146/annurev-phyto-080615-100056. Rutkoski J., Rutkoski J., Singh R., Huerta-Espino J., Bhavani S., Poland J., Jannink J., and Sorrells M., 2015, Efficient use of historical data for genomic selection: a case study of stem rust resistance in wheat, The Plant Genome, 8(1): 1-10. https://doi.org/10.3835/plantgenome2014.09.0046. Viana A., Resende M., Riaz S., and Walker M., 2016, Genome selection in fruit breeding: application to table grapes, Scientia Agricola, 73: 142-149. https://doi.org/10.1590/0103-9016-2014-0323. Wan D., Guo Y., Cheng Y., Hu Y., Xiao S., Wang Y., and Wen Y., 2020, CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera), Horticulture Research, 7(1): 116. https://doi.org/10.1038/s41438-020-0339-8 Wang X., Tu M., Wang D., Liu J., Li Y., Li Z., Wang Y., and Wang X., 2017, CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation, Plant Biotechnology Journal, 16: 844-855. https://doi.org/10.1111/pbi.12832 Yang S., Fresnedo-Ramírez J., Wang M., Cote L., Schweitzer P., Barba P., Takacs E., Clark M., Luby J., Manns D., Sacks G., Mansfield A., Londo J., Fennell A., Gadoury D., Reisch B., Cadle-Davidson L., and Sun Q., 2016, A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine, Horticulture Research, 3: 16002. https://doi.org/10.1038/hortres.2016.2 Yin W., Wang X., Liu H., Wang Y., Nocker S., Tu M., Fang J., Guo J., Li Z., and Wang X., 2022, Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signaling and specific metabolite synthesis, Horticulture Research, 9: uhab064. https://doi.org/10.1093/hr/uhab064 Zhang Y., Fan X., Li Y., Sun H., Jiang J., and Liu C., 2020, Restriction site-associated DNA sequencing reveals the molecular genetic diversity of grapevine and genes related to white rot disease, Scientia Horticulturae, 261: 108907. https://doi.org/10.1016/j.scienta.2019.108907 Zou C., Sapkota S., Figueroa-Balderas R., Glaubitz J., Cantu D., Kingham B., Sun Q., and Cadle-Davidson L., 2023, A multi-tiered haplotype strategy to enhance phased assembly and fine-mapping of a disease resistance locus, Plant Physiology, 193(4): 2321-2336. https://doi.org/10.1093/plphys/kiad494
RkJQdWJsaXNoZXIy MjQ4ODYzNA==