Molecular Pathogens 2024, Vol.15, No.1, 40-49 http://microbescipublisher.com/index.php/mp 48 Cadle-Davidson L., Gadoury D., Fresnedo-Ramírez J., Yang S., Barba P., Sun Q., Demmings E., Seem R., Schaub M., Nowogrodzki A., Kasinathan H., Ledbetter C., and Reisch B., 2016, Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci, Phytopathology, 106(10): 1159-1169. https://doi.org/10.1094/PHYTO-02-16-0080-FI Cappetta E., Andolfo G., Matteo A., Barone A., Frusciante L., and Ercolano M., 2020, Accelerating tomato breeding by exploiting genomic selection approaches, Plants, 9(9): 1236. https://doi.org/10.3390/plants9091236 Capriotti L., Baraldi E., Mezzetti B., Limera C., and Sabbadini S., 2020, Biotechnological approaches: gene overexpression, gene silencing, and genome editing to control fungal and oomycete diseases in grapevine, International Journal of Molecular Sciences, 21(16): 5701. https://doi.org/10.3390/ijms21165701 Collins P., Wen Z., and Zhang S., 2018, Marker-assisted breeding for disease resistance in crop plants, Biotechnologies of Crop Improvement, 3: 41-57. https://doi.org/10.1007/978-3-319-94746-4_3 Crossa J., Pérez-Rodríguez P., Cuevas J., Montesinos-López O., Jarquín D., Campos G., Burgueño J., González-Camacho J., Pérez-Elizalde S., Beyene Y., Dreisigacker S., Singh R., Zhang X., Gowda M., Roorkiwal M., Rutkoski J., and Varshney R., 2017, Genomic selection in plant breeding: methods, models, and perspectives, Trends in Plant Science, 22(11): 961-975. https://doi.org/10.1016/j.tplants.2017.08.011 Eibach R., and Töpfer R., 2015, Traditional grapevine breeding techniques, Grapevine Breeding Programs for the Wine Industry, pp.3-22. https://doi.org/10.1016/B978-1-78242-075-0.00001-6 Feechan A., Anderson C., Torregrosa L., Jermakow A., Mestre P., Wiedemann-Merdinoglu S., Merdinoglu D., Walker A., Cadle-Davidson L., Reisch B., Aubourg S., Bentahar N., Shrestha B., Bouquet A., Adam-Blondon A., Thomas M., and Dry I., 2013, Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine, The Plant Journal: for Cell and Molecular Biology, 76(40): 661-674. https://doi.org/10.1111/tpj.12327 Fodor Á., Segura V., Denis M., Neuenschwander S., Fournier‐Level A., Chatelet P., Homa F., Lacombe T., This P., and Cunff L., 2014, Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine, PLoS ONE, 9(11): e110436. https://doi.org/10.1371/journal.pone.0110436 Fröbel S., Dudenhöffer J., Töpfer R., and Zyprian E., 2019, Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10, Euphytica, 215: 1-21. https://doi.org/10.1007/s10681-019-2355-z Gaspero G., and Cattonaro F., 2010, Application of genomics to grapevine improvement, Australian Journal of Grape and Wine Research, 16: 122-130. https://doi.org/10.1111/J.1755-0238.2009.00072.X He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5:484. https://doi.org/10.3389/fpls.2014.00484 Huang M., Balimponya E., Mgonja E., McHale L., Luzi-Kihupi A., Wang G., and Sneller C., 2019, Use of genomic selection in breeding rice (Oryza sativa L.) for resistance to rice blast (Magnaporthe oryzae), Molecular Breeding, 39: 114. https://doi.org/10.1007/s11032-019-1023-2 Ibeagha-Awemu E., Peters S., Akwanji K., Imumorin I., and Zhao X., 2016, High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits, Scientific Reports, 6: 31109. https://doi.org/10.1038/srep31109 Jiao B., Hao x., Liu Z., Liu M., Wang J., Liu L., Liu N., Song R., Zhang J., Fang Y., and Xu Y., 2022, Engineering CRISPR immune systems conferring GLRaV-3 resistance in grapevine, Horticulture Research, 9: uhab023. https://doi.org/10.1093/hr/uhab023 Karn A., Zou C., Brooks S., Fresnedo-Ramírez J., Gabler F., Sun Q., Ramming D., Naegele R., Ledbetter C., and Cadle-Davidson L., 2021, Discovery of the REN11 locus from Vitis aestivalis for stable resistance to grapevine powdery mildew in a family segregating for several unstable and tissue-specific quantitative resistance loci, Frontiers in Plant Science, 12: 733899. https://doi.org/10.3389/fpls.2021.733899 Merdinoglu D., Schneider C., Prado E., Wiedemann-Merdinoglu S., and Mestre P. (2018). Breeding for durable resistance to downy and powdery mildew in grapevine, OENO One, 52(3): 203-209. https://doi.org/10.20870/OENO-ONE.2018.52.3.2116 Merrick L., Burke A., Chen X., and Carter A., 2021, Breeding with major and minor genes: genomic selection for quantitative disease resistance, Frontiers in Plant Science, 12: 713667. https://doi.org/10.3389/fpls.2021.713667 Merrick L., Herr A., Sandhu K., Lozada D., and Carter A., 2022, Optimizing plant breeding programs for genomic selection, Agronomy, 12: 714. https://doi.org/10.20944/preprints202202.0048.v1
RkJQdWJsaXNoZXIy MjQ4ODYzNA==