Molecular Pathogens 2024, Vol.15, No.1, 30-39 http://microbescipublisher.com/index.php/mp 38 Hu Y., Zhang M., Lu M., Wu Y., Jing T., Zhao M., Zhao Y., Feng Y., Wang J., Gao T., Zhou Z., Wu B., Jiang H., Wan X., Schwab W., and Song C., 2021, Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Plant Physiology, 188: 1507-1520. https://doi.org/10.1093/plphys/kiab569 Jayaswall K., Mahajan P., Singh G., Parmar R., Seth R., Raina A., Swarnkar M., Singh A., Shankar R., and Sharma R., 2016, Transcriptome analysis reveals candidate genes involved in blister blight defense in tea (Camellia sinensis (L) Kuntze), Scientific Reports, 6(1): 30412. https://doi.org/10.1038/srep30412. Jin S., Ren Q., Lian L., Cai X., Bian L., Luo Z., Li Z., Ye N., Wei R., He W., Liu W., and Chen Z., 2020, Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage, Planta, 252: 1-15. https://doi.org/10.1007/s00425-020-03407-0 Kourelis J., and Hoorn R., 2018, Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function, Plant Cell, 30: 285-299. https://doi.org/10.1105/tpc.17.00579 Kushalappa, A., Yogendra, K., Sarkar, K., Kage, U., and Karre S., 2016, Gene discovery and genome editing to develop cisgenic crops with improved resistance against pathogen infection, Canadian Journal of Plant Pathology, 38: 279-295. https://doi.org/10.1080/07060661.2016.1199597 Langner T., Kamoun S., and Belhaj K., 2018, CRISPR crops: plant genome editing toward disease resistance, Annual Review of Phytopathology, 56: 479-512. https://doi.org/10.1146/annurev-phyto-080417-050158. Li T., Wang S., Shi D., Fang W., Jiang T., Zhang L., Liu Y., Gao L., and Xia T., 2023, Phosphate deficiency induced by infection promotes synthesis of anthracnose-resistant anthocyanin-3-O-galactoside phytoalexins in the Camellia sinensis plant, Horticulture Research, 10(12): uhad222. https://doi.org/10.1093/hr/uhad222 Lin S., Ye M., Li X., Xing Y., Liu M., Zhang J., and Sun X., 2022, A novel inhibitor of the jasmonic acid signaling pathway represses herbivore resistance in tea plants, Horticulture Research, 9: uhab038. https://doi.org/10.1093/hr/uhab038 Liu N., Wang Y., Li K., Li C., Liu B., Zhao L., Zhang X., Qu F., Gao L., Xia T., and Wang P., 2023a, Transcriptional analysis of tea plants (Camellia sinensis) in response to salicylic acid treatment, Journal of Agricultural and Food Chemistry, 71(5): 2377-2389. https://doi.org/10.1021/acs.jafc.2c07046 Liu S., Zhang S., He S., Qiao X., and Runa A., 2023b, Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease, Horticulture Research, 10(4): uhad028. https://doi.org/10.1093/hr/uhad028 Mushtaq M., Sakina A., Wani S., Shikari A., Tripathi P., Zaid A., Galla A., Abdelrahman M., Sharma M., Singh A., and Salgotra R., 2019, Harnessing genome editing techniques to engineer disease resistance in plants, Frontiers in Plant Science, 10: 550. https://doi.org/10.3389/fpls.2019.00550 Roux F., Voisin D., Badet T., Balagué C., Barlet X., Huard-Chauveau C., Roby D., and Raffaele S., 2014, Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map, Molecular Plant Pathology, 15(5): 427-432. https://doi.org/10.1111/mpp.12138 Sanchez L., Courteaux B., Hubert J., Kauffmann S., Renault J., Clément C., Baillieul F., and Dorey S., 2012, Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in arabidopsis and highlight a central role for salicylic acid, Plant Physiology, 160: 1630-1641. https://doi.org/10.1104/pp.112.201913 Sekhwal M., Li P., Lam I., Wang X., Cloutier S., and You F., 2015, Disease resistance gene analogs (RGAs) in plants, International Journal of Molecular Sciences, 16: 19248-19290. https://doi.org/10.3390/ijms160819248 Singh H., Deka M., and Das S., 2015, Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of Class I chitinase gene from potato (Solanum tuberosum), Functional & Integrative Genomics, 15: 461-480. https://doi.org/10.1007/s10142-015-0436-1 Wang D., Li C., Ma C., and Chen L., 2015, Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons, Scientia Horticulturae, 192: 429-440. https://doi.org/10.1016/J.SCIENTA.2015.06.005 Wang Y., Hao X., Lu Q., Wang L., Qian W., Li N., Ding C., Wang X., and Yang Y., 2018, Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose, Horticulture Research, 5. https://doi.org/10.1038/s41438-018-0025-2 Wink M., Ashour M., and El-Readi M., 2012, Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents, Frontiers in Microbiology, 3: 130. https://doi.org/10.3389/fmicb.2012.00130
RkJQdWJsaXNoZXIy MjQ4ODYzNA==