MMR_2024v14n6

Molecular Microbiology Research 2024, Vol.14, No.6, 298-306 http://microbescipublisher.com/index.php/mmr 306 Shao X.L., Wu Q.H., Li L., He W.M., He X.T., Cheng D.J., Murero A., Lin L., Wang L.M., Zhong C.H., Huang L.L., and Qian G.L., 2023, Adapting the inoculation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from branch microbiome, Molecular Plant Pathology, 25(1): e13399. https://doi.org/10.1111/mpp.13399 Sharma S., Rana V., Rana N., Sharma U., Gudeta K., Alharbi K., Ameen F., and Bhat S., 2022, Effect of organic manures on growth, yield, leaf nutrient uptake and soil properties of kiwifruit (Actinidia deliciosa Chev.) cv. Allison, Plants, 11(23): 3354. https://doi.org/10.3390/plants11233354 Shen H., He X.H., Liu Y.Q., Chen Y., Tang J.M., and Guo T., 2016, A complex inoculant of N2-Fixing, P- and K-Solubilizing bacteria from a purple soil improves the growth of kiwifruit (Actinidia chinensis) plantlets, Frontiers in Microbiology, 7: 841. https://doi.org/10.3389/fmicb.2016.00841 Sui Y., Zhao Q.H., Wang Z.S., Liu J., Jiang M.G., Yue J.Y., Lan J.B., Liu J., Liao Q.H., Wang Q., Yang Q.Y., and Zhang H.Y., 2021, A comparative analysis of the microbiome of kiwifruit at harvest under open-field and rain-shelter cultivation systems, Frontiers in Microbiology, 12: 757719. https://doi.org/10.3389/fmicb.2021.757719 Vanneste J., 2017, The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae), Annual Review of Phytopathology, 55: 377-399. https://doi.org/10.1146/annurev-phyto-080516-035530 Wang Q.P., Zhang C., Li J.H., Wu X.M., Long Y.H., and Su Y., 2021, Intercropping Vicia sativa L. improves the moisture, microbial community, enzyme activity and nutrient in rhizosphere soils of young kiwifruit plants and enhances plant growth, Horticulturae, 7(10): 335. https://doi.org/10.3390/horticulturae7100335 Wicaksono W., Jones E., Casonato S., Monk J., and Ridgway H., 2018, Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant, Biological Control, 116: 103-112. https://doi.org/10.1016/J.BIOCONTROL.2017.03.003 Xia H., Yang C.G., Liang Y., He Z.Z., Guo Y.Q., Lang Y.X., Wei J., Tian X.B., Lin L.J., Deng H.H., Wang J., Lv X.L., and Liang D., 2022, Melatonin and arbuscular mycorrhizal fungi synergistically improve drought toleration in kiwifruit seedlings by increasing mycorrhizal colonization and nutrient uptake. Frontiers in Plant Science, 13: 1073917. https://doi.org/10.3389/fpls.2022.1073917 Xu X.T., Zheng D., Lan J.B., Song W., Song S.Y., Huang L., Liu Y.S., and Tang W., 2022, First report of post-harvest anthracnose of kiwifruit caused by Colleotrichum fioriniae in Liaoning and Sichuan Province, China, Plant Disease, 107(4): 1236. https://doi.org/10.1094/PDIS-07-22-1671-PDN Yang S., Shu R., Yin X.H., Long Y.H., and Yuan J. 2022, Response of soil microbial community structure mediated by sulfur-induced resistance against kiwifruit bacterial canker, Frontiers in Microbiology, 13: 883463. https://doi.org/10.3389/fmicb.2022.883463 Zhang Z.Z., Long Y.H., Yin X.H., and Yang S., 2021, Sulfur-Induced Resistance against Pseudomonas syringae pv. actinidiae via triggering salicylic acid signaling pathway in kiwifruit, International Journal of Molecular Sciences, 22(23): 12710. https://doi.org/10.3390/ijms222312710 Zhu Y.Y., Yu J., Brecht J., Jiang T.J., and Zheng X.L., 2016, Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansumin kiwifruit during postharvest storage, Food chemistry, 190: 537-543. https://doi.org/10.1016/j.foodchem.2015.06.001

RkJQdWJsaXNoZXIy MjQ4ODYzNA==