Molecular Microbiology Research 2024, Vol.14, No.6, 290-297 http://microbescipublisher.com/index.php/mmr 297 Salvo L., Cellucci G., Carlino M., and Salamone I., 2018, Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zeamays L.) grain yield and modified rhizosphere microbial communities, Applied Soil Ecology, 126: 113-120. https://doi.org/10.1016/J.APSOIL.2018.02.010 Song T.S., Wang J.K., Xu X.Y., Sun C.X., Sun C., Chen Z.H., Zhang Y.L., and Hao L.Y., 2023, Microbial community and network differently reshaped by crushed straw or biochar incorporation and associated with nitrogen fertilizer level, GCB Bioenergy, 15: 1255-1272. https://doi.org/10.1111/gcbb.13090 Sui P.X., Tian P., Wang Z.Y., Lian H.L., Yang Y.D., Ma Z.Q., Jiang Y., Zheng J.Y., and Qi H., 2022, Soil properties and microbial communities of spring maize filed in response to tillage with straw incorporation and nitrogen fertilization in northeast China, PeerJ, 10: e13462. https://doi.org/10.7717/peerj.13462 Wakelin S., Colloff M., Harvey P., Marschner P., Gregg A., and Rogers S., 2007, The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize, FEMS Microbiology Ecology, 59(3): 661-670 . https://doi.org/10.1111/J.1574-6941.2006.00235.X Wang J.L., Liu K.L., Zhao X.Q., Zhang H.Q., Li D., Li J.J., and Shen R.F., 2021, Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil, The Science of the Total Environment, 793: 148664. https://doi.org/10.1016/j.scitotenv.2021.148664 Wang Y.L., Zhang L.Q., Meng F., Lou Z.X., An X.Y., Jiang X.B., Zhao H.Y., and Zhang W., 2023, Responses of Soil Microbial Communities in Soybean–Maize Rotation to Different Fertilization Treatments, Agronomy, 13(6): 1590. https://doi.org/10.3390/agronomy13061590 Xie Y.X., Dong C., Chen Z.Y., Liu Y.J., Zhang Y.Y., Gou P.X., Zhao X., Ma D.Y., Kang G.Z., Wang C.Y., Zhu Y.J., and Guo T.C., 2020, Successive biochar amendment affected crop yield by regulating soil nitrogen functional microbes in wheat-maize rotation farmland, Environmental research, 194: 110671. https://doi.org/10.1016/j.envres.2020.110671 Yang L., Muhammad I., Chi Y.X., Wang D., and Zhou X.B., 2022, Straw return and nitrogen fertilization to maize regulate soil properties, microbial community, and enzyme activities under a dual cropping system, Frontiers in Microbiology, 13: 823963. https://doi.org/10.3389/fmicb.2022.823963 Zhan C.Y., 2024, Engineered syncoms for climate-resilient agriculture: field trials and performance evaluation, Bioscience Evidence, 14(2): 44-55. https://doi.org/10.5376/be.2024.14.0007 Zhang Q., Guo T.F., Sheng K., Shi W.X., Han Y.L., Wang Y.L., and Li H., 2022, Continuous straw return for 8 years mitigates the negative effects of inorganic fertilisers on C‐cycling soil bacteria, European Journal of Soil Science, 73(6): e13322. https://doi.org/10.1111/ejss.13322 Zhang S.L., Li M., Cui X.Y., and Pan Y.M., 2023, Effect of different straw retention techniques on soil microbial community structure in wheat-maize rotation system, Frontiers in Microbiology, 13: 1069458. https://doi.org/10.3389/fmicb.2022.1069458 Zhang Y.L., Li T.T., Wu H.H., Bei S., Zhang J.L., and Li X.L., 2019, Effect of different fertilization practices on soil microbial community in a wheat-maize rotation system, Sustainability, 11(15): 1-11. https://doi.org/10.3390/SU11154088 Zhang Z.Y., Zhang X.K., Xu M.G., Zhang S.Q., Huang S.M., and Liang W.J., 2016, Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system, Applied Soil Ecology, 98: 56-64. https://doi.org/10.1016/J.APSOIL.2015.09.008 Zhou J., and Xu L.M., 2024, Conventional breeding vs. genetic engineering in maize: a comparative study, Maize Genomics and Genetics, 15(2): 49-59. https://doi.org/10.5376/mgg.2024.15.0006
RkJQdWJsaXNoZXIy MjQ4ODYzNA==