MMR_2024v14n6

Molecular Microbiology Research 2024, Vol.14, No.6, 277-289 http://microbescipublisher.com/index.php/mmr 288 Ludwików A., Cieśla A., Arora P., Das G., Rao G., and Das R., 2015, Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar, Frontiers in Plant Science, 6: 698. https://doi.org/10.3389/fpls.2015.00698 Lyu J., Li B.Y., He W.M., Zhang S.L., Gou Z.H., Zhang J., Meng L.Y., Li X., Tao D.Y., Huang W.Q., Hu F.Y., and Wang W., 2014, A genomic perspective on the important genetic mechanisms of upland adaptation of rice, BMC Plant Biology, 14: 160. https://doi.org/10.1186/1471-2229-14-160 Mao T., Zhu M., Ahmad S., Ye G., Sheng Z., Hu Si., and Shao G., 2021, Superior japonica rice variety YJ144 with improved rice blast resistance, yield, and quality achieved using molecular design and multiple breeding strategies, Molecular Breeding, 10: 65-65. Martin-Urdiroz M., Osés-Ruiz M., Ryder L., and Talbot N., 2016, Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae, Fungal Genetics and Biology, 90: 61-68. https://doi.org/10.1016/j.fgb.2015.12.009 Meng X.L., Xiao G., Telebanco-Yanoria M., Siazon P., Padilla J., Opulencia R., Bigirimana J., Habarugira G., Wu J., Li M.J., Wang B.H., Lu G.D., and Zhou B., 2020, The broad-spectrum rice blast resistance (R) gene pita2 encodes a novel R protein unique fromPita, Rice, 13: 19. https://doi.org/10.1186/s12284-020-00377-5 Mgonja E., Park C., Kang H., Balimponya E., Opiyo S., Bellizzi M., Mutiga S., Rotich F., Ganeshan V., Mabagala R., Sneller C., Correll J., Zhou B., Talbot N., Mitchell T., and Wang G., 2017, Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaporthe oryzae populations in Africa, Phytopathology, 107(9): 1039-1046. https://doi.org/10.1094/PHYTO-12-16-0421-R Miah G., Rafii M., Ismail M., Puteh A., Rahim H., Islam K., and Latif M., 2013, A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance, International Journal of Molecular Sciences, 14: 22499-22528. https://doi.org/10.3390/ijms141122499 Narayanan N., Baisakh N., Oliva N., VeraCruz C., Gnanamanickam S., Datta K., and Datta S., 2004, Molecular breeding: marker-assisted selection combined with biolistic transformation for blast and bacterial blight resistance in Indica rice (cv. CO39), Molecular Breeding, 14: 61-71. https://doi.org/10.1023/B:MOLB.0000037995.63856.2d Ni D.H., Song F.S., Ni J.L., Zhang A.F., Wang C.L., Zhao K.J., Yang Y.C., Wei P.C., Yang J.B., and Li L., 2015, Marker-assisted selection of t wo-line hybrid rice for disease resistance to rice blast and bacterial blight, Field Crops Research, 184: 1-8. https://doi.org/10.1016/J.FCR.2015.07.018 Xiao N., Wu Y.Y., and Li A.H., 2020, Strategy for use of rice blast resistance genes in rice molecular breeding, Rice Science, 27(4): 263-277. https://doi.org/10.1016/j.rsci.2020.05.003 Nizolli V., Pegoraro C., and Oliveira A., 2021, Rice blast: strategies and challenges for improving genetic resistance, Crop Breeding and Applied Biotechnology, 21(S): e387721S9. https://doi.org/10.1590/1984-70332021v21sa22 Oliveira-Garcia E., Yan X., Osés-Ruiz M., de Paula S., and Talbot N., 2023, Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae, The New Phytologist, 241(3): 1007-1020. https://doi.org/10.1111/nph.19446 Ray S., Singh P., Gupta D., Mahato A., Sarkar C., Rathour R., Singh N., and Sharma T., 2016, Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54, Frontiers in Plant Science, 7: 1140. https://doi.org/10.3389/fpls.2016.01140 Ribot C., Hirsch J., Balzergue S., Tharreau D., Nottéghem J., Lebrun M., and Morel J., 2008, Susceptibility of rice to the blast fungus, Magnaporthe grisea, Journal of Plant Physiology, 165(1): 114-124. https://doi.org/10.1016/J.JPLPH.2007.06.013 Sang S.F., Wang J.Y., Zhou J., Cao M.Y., Wang Y.N., Zhang J.Q., and Zhang W.L., 2022, Development of Pi-kh marker for rice blast resistance gene and its application in disease resistance breeding, Molecular Plant Breeding, 20(5): 1588-1596. https://doi.org/10.13271/j.mpb.020.001588 Shanika G., Janani W., Menaka F., Sachith A., Indika W., and Chandima A., 2024, Functional genomic regions associated with blast disease resistance in rice predicted syntenic orthologs and potential resistance gene candidates from diverse cereal genomes, Physiological and Molecular Plant Pathology, 133: 102344. https://doi.org/10.1016/j.pmpp.2024.102344 Sheoran N., Ganesan P., Mughal N., Yadav I., and Kumar A., 2021, Genome assisted molecular typing and pathotyping of rice blast pathogen, Magnaporthe oryzae, reveals a genetically homogenous population with high virulence diversity, Fungal Biology, 125(9): 733-747. https://doi.org/10.1016/J.FUNBIO.2021.04.007 Srichant N., Chankaew S., Monkham T., Thammabenjapone P., and Sanitchon J., 2019, Development of sakon nakhon ice ariety for blast resistance through marker assisted backcross breeding, Agronomy, 9(2): 67. https://doi.org/10.3390/AGRONOMY9020067 Tan Q.Q., He H.Y., Chen W., Huang L., Zhao D.L., Chen X.J., Li J.Y., and Yang X.H., 2022, Integrated genetic analysis of leaf blast resistance in upland rice: QTL mapping, bulked segregant analysis and transcriptome sequencing, AoB Plants, 14(6): plac047. https://doi.org/10.1093/aobpla/plac047

RkJQdWJsaXNoZXIy MjQ4ODYzNA==