Molecular Microbiology Research 2024, Vol.14, No.5, 248-258 http://microbescipublisher.com/index.php/mmr 257 Khan N., Ali S., Shahid M., Mustafa A., Sayyed R., and Curá J., 2021, Insights into the Interactions among roots rhizosphere and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review, Cells, 10(6): 1551. https://doi.org/10.3390/cells10061551 Kim M., Chae D., Cho G., Kim D., and Kwak Y., 2019, Characterization of antibacterial strains against kiwifruit bacterial canker pathogen, The Plant Pathology Journal, 35: 473-485. https://doi.org/10.5423/PPJ.OA.05.2019.0154 Kim M., Do H., Cho G., Jeong R., and Kwak Y., 2019, Comparison of microbial community of rhizosphere and endosphere in kiwifruit, The Plant Pathology Journal, 35: 705-711. https://doi.org/10.5423/PPJ.NT.08.2019.0216 Kong Z., and Liu H., 2022, Modification of Rhizosphere Microbial Communities: A Possible Mechanism of Plant Growth Promoting Rhizobacteria Enhancing Plant Growth and Fitness, Frontiers in Plant Science, 13: 920813. https://doi.org/10.3389/fpls.2022.920813 Kumar R., Swapnil P., Meena M., Selpair S., and Yadav B., 2022, Plant growth-promoting rhizobacteria (PGPR): approaches to alleviate abiotic stresses for enhancement of growth and development of medicinal plants, Sustainability, 14(23): 15514. https://doi.org/10.3390/su142315514 Liu Z., Guo Q., Feng Z., Liu Z., Li H., Sun Y., Liu C., and Lai H., 2020, Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity, Applied Soil Ecology, 147: 103426. https://doi.org/10.1016/j.apsoil.2019.103426 Makgato M., Araya H., Plooy C., Mokgehle S., and Mudau F., 2020, Effects of rhizobium inoculation on N2 fixation phytochemical profiles and rhizosphere soil microbes of cancer bush Lessertia frutescens (L.), Agronomy, 10(11): 1675. https://doi.org/10.3390/agronomy10111675 Mendes R., Garbeva P., and Raaijmakers J., 2013, The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms, FEMS Microbiology Reviews, 37(5): 634-663. https://doi.org/10.1111/1574-6976.12028 Mhlongo M., Piater L., Madala N., Labuschagne N., and Dubery I., 2018, The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance, Frontiers in Plant Science, 9: 112. https://doi.org/10.3389/fpls.2018.00112 Nadeem S., Ahmad M., Zahir Z., Javaid A., and Ashraf M., 2014, The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments, Biotechnology Advances, 32(2): 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005 Philippot L., Raaijmakers J., Lemanceau P., and Putten W., 2013, Going back to the roots: the microbial ecology of the rhizosphere, Nature Reviews Microbiology, 11: 789-799. https://doi.org/10.1038/nrmicro3109 Wang Q.P., Zhang C., Li J.H., Wu X.M., Long Y.H., and Su Y., 2021, Intercropping Vicia sativa L. improves the moisture microbial community enzyme activity and nutrient in rhizosphere soils of young kiwifruit plants and enhances plant growth, Horticulturae, 7(10): 335. https://doi.org/10.3390/horticulturae7100335 Richardson D., Ansell J., and Drummond L., 2018, The nutritional and health attributes of kiwifruit: a review, European Journal of Nutrition, 57: 2659-2676. https://doi.org/10.1007/s00394-018-1627-z Rotoni C., Leite M., Pijl A., and Kuramae E., 2022, Rhizosphere microbiome response to host genetic variability: a trade-off between bacterial and fungal community assembly, FEMS Microbiology Ecology, 98(6): fiac061. https://doi.org/10.1093/femsec/fiac061 Schmidt J., Vannette R., Igwe A., Blundell R., Casteel C., and Gaudin A., 2019, Effects of Agricultural Management on Rhizosphere Microbial Structure and Function in Processing Tomato Plants, Applied and Environmental Microbiology, 85(16): e01064-19. https://doi.org/10.1128/AEM.01064-19 Shi Y., Pan Y., Xiang L., Zhu Z., Fu W., Hao G., Geng Z., Chen S., Li Y., and Han D., 2021, Assembly of rhizosphere microbial communities in Artemisia annua: recruitment of plant growth‐promoting microorganisms and inter‐kingdom interactions between bacteria and fungi, Plant and Soil, 470: 127-139. https://doi.org/10.1007/S11104-021-04829-9 Su L., Bai T., Qin X., Yu H., Wu G., Zhao Q., and Tan L., 2021, Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting, Applied Soil Ecology, 166: 103994. https://doi.org/10.1016/J.APSOIL.2021.103994 Xu J., Zhang Y., Zhang Y., Zhang P., Trivedi P., Riera N., Wang Y., Liu X., Fan G., Tang J., Coletta-Filho H., Cubero J., Deng X., Ancona V., Lu Z., Zhong B., Roper M., Capote N., Catara V., Pietersen G., Vernière C., Al-Sadi A., Li L., Yang F., Xu X., Wang J., Yang H., Jin T., and Wang N., 2018, The structure and function of the global citrus rhizosphere microbiome, Nature Communications, 9: 4894, https://doi.org/10.1038/s41467-018-07343-2
RkJQdWJsaXNoZXIy MjQ4ODYzNA==