MMR_2024v14n5

Molecular Microbiology Research 2024, Vol.14, No.5, 218-225 http://microbescipublisher.com/index.php/mmr 224 References Andargie Y., Lee G., Jeong M., Tagele S., and Shin J., 2023, Deciphering key factors in pathogen-suppressive microbiome assembly in the rhizosphere, Frontiers in Plant Science, 14: 1301698. https://doi.org/10.3389/fpls.2023.1301698 Backer R., Rokem J., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., and Smith D., 2018, Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture, Frontiers in Plant Science, 9: 1473. https://doi.org/10.3389/fpls.2018.01473 Besset-Manzoni Y., Rieusset L., Joly P., Comte G., and Prigent-Combaret C., 2018, Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies, Environmental Science and Pollution Research, 25: 29953-29970. https://doi.org/10.1007/s11356-017-1152-2 Cumming J., Zawaski C., Desai S., and Collart F., 2015, Phosphorus disequilibrium in the tripartite plant-ectomycorrhiza-plant growth promoting rhizobacterial association. Journal of Soil Science and Plant Nutrition, 15: 464-485. https://doi.org/10.4067/S0718-95162015005000040 Dao J., Xing Y., Chen C., Chen M., and Wang Z., 2023, Adaptation of rhizosphere bacterial communities of drought-resistant sugarcane varieties under different degrees of drought stress, Microbiology Spectrum, 11(5): e01184-23. https://doi.org/10.1128/spectrum.01184-23 Doty S., 2016, Plant–microbe symbiotic interactions, Plant Molecular Biology, 90: 535. https://doi.org/10.1007/s11103-016-0470-y Fan W.Q., Xiao Y.Z., Dong J.Q., Xing J., Tang F., and Shi F.L., 2023, Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress, Frontiers in Plant Science, 14: 1324333. https://doi.org/10.3389/fpls.2023.1324333 Fu X.H., Huang Y., Fu Q., Qiu Y.B., Zhao J.Y., Li J.X., Wu X.C., Yang Y.H., Liu H.E., Yang X., and Chen H.H., 2023, Critical transition of soil microbial diversity and composition triggered by plant rhizosphere effects, Frontiers in Plant Science, 14: 1252821. https://doi.org/10.3389/fpls.2023.1252821 Gupta S., Schillaci M., Walker R., Smith P., Watt M., and Roessner U., 2020, Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: current knowledge, perspectives and future directions, Plant and Soil, 461: 219-244. https://doi.org/10.1007/s11104-020-04618-w Hakim S., Naqqash T., Nawaz M., Laraib I., Siddique M., Zia R., Mirza M., and Imran A., 2021, Rhizosphere Engineering With Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability, 5: 617157. https://doi.org/10.3389/fsufs.2021.617157 Hao L.J., Zhang Z.C., Hao B.H., Diao F.W., Zhang J.X., Bao Z.H., and Guo W., 2021, Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La, Ecotoxicology and Environmental Safety, 212: 111996. https://doi.org/10.1016/j.ecoenv.2021.111996 Hashem A., Tabassum B., and Abd_Allah E., 2019, Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress, Saudi Journal of Biological Sciences, 26(6): 1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004 Ho-Plágaro T., and García-Garrido J., 2022, Molecular regulation of arbuscular mycorrhizal symbiosis, International Journal of Molecular Sciences, 23(11): 5960. https://doi.org/10.3390/ijms23115960 Hu J., Wei Z., Kowalchuk G., Xu Y., Shen Q., and Jousset, A., 2020, Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development, Environmental Microbiology, 2(12): 5005-5018. https://doi.org/10.1111/1462-2920.15097 Irshad A., Rehman R., Abrar M., Saeed Q., Sharif R., and Hu T., 2021, Contribution of rhizobium–legume symbiosis in salt stress tolerance in Medicago truncatula evaluated through photosynthesis, antioxidant enzymes, and compatible solutes accumulation, Sustainability, 13(6): 3369. https://doi.org/10.3390/SU13063369 Khan N., Ali S., Shahid M., Mustafa A., Sayyed R., and Curá J., 2021, Insights into the Interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review, Cells, 10(6): 1551. https://doi.org/10.3390/cells10061551 Kumar A., Singh S., Gaurav A., Srivastava S., and Verma J., 2020, Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants, Frontiers in Microbiology, 11: 1216. https://doi.org/10.3389/fmicb.2020.01216 Lazcano C., Boyd E., Holmes G., Hewavitharana S., Pasulka A., and Ivors K., 2021, The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions, Scientific Reports, 11: 3188. https://doi.org/10.1038/s41598-021-82768-2 Li H., La S., Zhang X., Gao L., and Tian Y., 2021, Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress, The ISME Journal, 15: 2865-2882. https://doi.org/10.1038/s41396-021-00974-2

RkJQdWJsaXNoZXIy MjQ4ODYzNA==