Molecular Microbiology Research 2024, Vol.14, No.5, 208-217 http://microbescipublisher.com/index.php/mmr 217 Negus D., Moore C., Baker M., Raghunathan D., Tyson J., and Sockett R., 2017, Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting? Annual Review of Microbiology, 71: 441-457. https://doi.org/10.1146/annurev-micro-090816-093618 Niu B., Wang W., Yuan Z., Sederoff R., Sederoff H., Chiang V., and Borriss R., 2020, Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease, Frontiers in Microbiology, 11: .585404 https://doi.org/10.3389/fmicb.2020.585404 Olanya O., and Lakshman D., 2015, Potential of predatory bacteria as biocontrol agents for foodborne and plant pathogens, Journal of Plant Pathology, 97: 405-417. https://doi.org/10.4454/JPP.V97I3.027 Rueda-Ramírez D., Palevsky E., and Ruess L., 2022, Soil nematodes as a means of conservation of soil predatory mites for biocontrol, Agronomy, 13(1): 32. https://doi.org/10.3390/agronomy13010032 Saeed Q., Wang X., Haider F., Kučerík J., Mumtaz M., Holátko J., Naseem M., Kintl A., Ejaz M., Naveed M., Brtnický M., and Mustafa A., 2021, Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms, International Journal of Molecular Sciences, 22(19): 10529. https://doi.org/10.3390/ijms221910529 Saito T., and Brownbridge M., 2016, Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis, Biological Control, 92: 92-100. https://doi.org/10.1016/J.BIOCONTROL.2015.10.003 Shahriar S., Islam M., Chun C., Kaur P., Rahim M., Islam M., Uddain J., and Siddiquee S., 2022, Microbial metabolomics interaction and ecological challenges of Trichoderma species as biocontrol inoculant in crop rhizosphere, Agronomy, 12(4): 900. https://doi.org/10.3390/agronomy12040900 Srirengaraj V., Razafindralambo H., Rabetafika H., Nguyen H., and Sun Y., 2023, Synbiotic agents and their active components for sustainable aquaculture: concepts, action mechanisms, and applications, Biology, 12(12): 1498. https://doi.org/10.3390/biology12121498 Sydney N., Swain M., So J., Hoiczyk E., Tucker N., and Whitworth D., 2021, The genetics of prey susceptibility to myxobacterial predation: a review, including an investigation into Pseudomonas aeruginosa mutations affecting predation by Myxococcus xanthus, Microbial Physiology, 31(2): 57-66. https://doi.org/10.1159/000515546 Tan L., Chan K., Lee L., and Goh B., 2016, Streptomyces bacteria as potential probiotics in aquaculture, Frontiers in Microbiology, 7: 79. https://doi.org/10.3389/fmicb.2016.00079 Tang X.Q., 2024, Decoding microbial interactions: mechanistic insights into engineered syncoms at the microscopic level, Bioscience Method, 15(2): 76-88. https://doi.org/10.5376/bm.2024.15.0009 Tariq M., Khan A., Asif M., Khan F., Ansari T., Shariq M., and Siddiqui M., 2020, Biological control: a sustainable and practical approach for plant disease management, Acta Agriculturae Scandinavica, Section B—Soil and Plant Science, 70: 507-524. https://doi.org/10.1080/09064710.2020.1784262 Vurukonda S., Giovanardi D., and Stefani E., 2018, Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes, International Journal of Molecular Sciences, 19(4): 952. https://doi.org/10.3390/ijms19040952 Welsh R., Zaneveld J., Rosales S., Payet J., Burkepile D., and Thurber R., 2015, Bacterial predation in a marine host-associated microbiome, The ISME Journal, 10: 1540-1544. https://doi.org/10.1038/ismej.2015.219 Wucher B., Elsayed M., Adelman J., Kadouri D., and Nadell C., 2021, Bacterial predation transforms the landscape and community assembly of biofilms, Current Biology, 31: 2643-2651.e3. https://doi.org/10.1016/j.cub.2021.03.036
RkJQdWJsaXNoZXIy MjQ4ODYzNA==