Molecular Microbiology Research 2024, Vol.14, No.5, 208-217 http://microbescipublisher.com/index.php/mmr 216 Büttner H., Niehs S., Vandelannoote K., Cseresnyés Z., Dose B., Richter I., Gerst R., Figge M., Stinear T., Pidot S., and Hertweck C., 2021, Bacterial endosymbionts protect beneficial soil fungus from nematode attack, Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2110669118. https://doi.org/10.1073/pnas.2110669118 Cabello F., Godfrey H., Buschmann A., and Dölz H., 2016, Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance, The Lancet Infectious Diseases, 16(7): e127-e133. https://doi.org/10.1016/S1473-3099(16)00100-6 Charoonnart P., Purton S., and Saksmerprome V., 2018, Applications of microalgal biotechnology for disease control in aquaculture, Biology, 7(2): 24. https://doi.org/10.3390/biology7020024 Cuthbert R., Dalu T., Wasserman R., Weyl O., Froneman W., Callaghan A., Coughlan N., and Dick J., 2020, Alternative prey impedes the efficacy of a natural enemy of mosquitoes, Biological Control, 141: 104146. https://doi.org/10.1016/j.biocontrol.2019.104146 Dong H., Xu X., Gao R., Li Y., Li A., Yao Q., and Zhu, H., 2022, Myxococcus xanthus R31 suppresses tomato bacterial wilt by inhibiting the pathogen Ralstonia solanacearumwith secreted proteins, Frontiers in Microbiology, 12: 801091. https://doi.org/10.3389/fmicb.2021.801091 Duncan M., Gillette R., Maglasang M., Corn E., Tai A., Lazinski D., Shanks R., Kadouri D., and Camilli A., 2019, High-throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus, mBio, 10(3): 1-12. https://doi.org/10.1128/mBio.01040-19 Dwidar M., and Yokobayashi Y., 2017, Controlling Bdellovibrio bacteriovorus gene expression and predation using synthetic riboswitches, ACS Synthetic Biology, 6(11): 2035-2041. https://doi.org/10.1021/acssynbio.7b00171. Endersen L., and Coffey A., 2020, The use of bacteriophages for food safety, Current Opinion in Food Science, 36: 1-8. https://doi.org/10.1016/j.cofs.2020.10.006 Herencias C., Salgado-Briegas S., and Prieto M., 2020, Emerging horizons for industrial applications of predatory bacteria, The Ecology of Predation at the Microscale, 7: 173-194. https://doi.org/10.1007/978-3-030-45599-6_7 Hossain M., Sadekuzzaman M., and Ha S., 2017, Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review, Food Research International, 100(Pt 1): 63-73. https://doi.org/10.1016/j.foodres.2017.07.077 Ibrahimi M., Loqman S., Jemo M., Hafidi M., Lemée L., and Ouhdouch Y., 2023, The potential of facultative predatory Actinomycetota spp. and prospects in agricultural sustainability, Frontiers in Microbiology, 13: 1081815. https://doi.org/10.3389/fmicb.2022.1081815 Kehe J., Kulesa A., Ortiz A., Ackerman C., Thakku S., Sellers D., Kuehn S., Gore J., Friedman J., and Blainey P., 2019, Massively parallel screening of synthetic microbial communities, Proceedings of the National Academy of Sciences, 116: 12804-12809. https://doi.org/10.1073/pnas.1900102116 Kjeldgaard B., Neves A., Fonseca C., Kovács Á., and Domínguez-Cuevas P., 2022, Quantitative high-throughput screening methods designed for identification of bacterial biocontrol strains with antifungal properties, Microbiology Spectrum, 10(2): e01433-21.. https://doi.org/10.1128/spectrum.01433-21 Lenteren J., Bolckmans K., Köhl J., Ravensberg W., and Urbaneja A., 2018, Biological control using invertebrates and microorganisms: plenty of new opportunities, BioControl, 63: 39-59. https://doi.org/10.1007/s10526-017-9801-4 Loomans A., 2020, Every generalist biological control agent requires a special risk assessment, BioControl, 66: 23-35. https://doi.org/10.1007/s10526-020-10022-1 Massart S., Sare A., and Jijakli H., 2015, Biological control in the microbiome era: challenges and opportunities, Biological Control, 89: 98-108. https://doi.org/10.1016/J.BIOCONTROL.2015.06.003 McNeely D., Chanyi R., Dooley J., Moore J., and Koval S., 2017, Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus, Canadian Journal of Microbiology, 63(4): 350-358. https://doi.org/10.1139/cjm-2016-0612 Mutalik V., Adler B., Rishi H., Piya D., Zhong C., Koskella B., Calendar R., Novichkov P., Price M., Deutschbauer A., and Arkin A., 2020, High-throughput mapping of the phage resistance landscape in E. coli, PLoS Biology, 18: 1-55. https://doi.org/10.1101/2020.02.15.951020 Nandi M., Berry C., Brassinga A., Belmonte M., Fernando W., Loewen P., and Kievit T., 2016, Pseudomonas brassicacearum strain DF41 Kills Caenorhabditis elegans through biofilm-dependent and biofilm-independent mechanisms, Applied and Environmental Microbiology, 82: 6889-6898. https://doi.org/10.1128/AEM.02199-16
RkJQdWJsaXNoZXIy MjQ4ODYzNA==