Molecular Microbiology Research 2024, Vol.14, No.4, 188-197 http://microbescipublisher.com/index.php/mmr 197 Wang Q., Liu J., and Zhu H., 2018, Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions, Frontiers in Plant Science, 9: 313. https://doi.org/10.3389/fpls.2018.00313 Wang X.L., Feng H., Wang Y.Y., Wang M.X., Xie X.G., Chang H.Z., Wang L., Qu J.C., Sun K., He W., Wang C.Y., Dai C.C., Chu Z.H., Tian C.F., Yu N., Zhang X.B., Liu H., and Wang E., 2020, Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis, Molecular Plant, 14(3): 503-516. https://doi.org/10.1016/j.molp.2020.12.002 Wu Z.Q., 2024, Microbial predators: a new frontier in disease management, Molecular Pathogens, 15(2): 50-60. https://doi.org/10.5376/mp.2024.15.0006 Yan H., Ji Z.J., Jiao Y.S., Wang E.T., Chen W.F., Guo B.L., and Chen W.X., 2016, Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp., and Hedysarum polybotrys in agricultural soils, Systematic and Applied Microbiology, 39(2): 141-149. https://doi.org/10.1016/j.syapm.2016.01.004 Yang J., Lan L., Jin Y., Yu N., Wang D., and Wang E., 2021, Mechanisms underlying legume-rhizobium symbiose, Journal of Integrative Plant Biology, 64(2): 244-267.
RkJQdWJsaXNoZXIy MjQ4ODYzNA==