MMR_2024v14n4

Molecular Microbiology Research 2024, Vol.14, No.4, 162-170 http://microbescipublisher.com/index.php/mmr 169 Carmona M., Sautua F., Pérez-Hernández O., and Reis E., 2020, Role of fungicide applications on the integrated management of wheat stripe rust, Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00733 Chung E., Hossain M., Khan A., Kim K., Jeon C., and Chung, Y., 2015, Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice, The Plant Pathology Journal, 31(2): 152-164. https://doi.org/10.5423/PPJ.OA.12.2014.0136 Cook N., Chng S., Woodman T., Warren R., Oliver R., and Saunders D., 2021, High frequency of fungicide resistance-associated mutations in the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici, Pest Management Science, 77(7): 3358-3371. https://doi.org/10.1002/ps.6380 Dung J., Kaur N., Walenta D., Alderman S., Frost K., and Hamm, P., 2018, Reducing Claviceps purpurea sclerotia germination with soil-applied fungicides, Crop Protection, 106: 146-149. https://doi.org/10.1016/J.CROPRO.2017.12.023 Fones H., Bebber D., Chaloner T., Kay W., Steinberg G., and Gurr S., 2020, Threats to global food security from emerging fungal and oomycete crop pathogens, Nature Food, 1: 332-342. https://doi.org/10.1038/s43016-020-0075-0 Frost M., Haramoto E., Renner K., and Brainard D., 2019, Tillage and cover crop effects on weed seed persistence: do light exposure and fungal pathogens play a role? Weed Science, 67: 103-113. https://doi.org/10.1017/wsc.2018.80 Fulcher M., Law E., Wayman S., Ryan M., and Bergstrom G., 2022, Fungal plant pathogens observed on perennial cereal crops in New York during 2017–2018, Renewable Agriculture and Food Systems, 37(4): 279-291. https://doi.org/10.1017/s1742170521000582 Gorshkov V., Osipova E., Ponomareva M., Ponomarev S., Gogoleva N., Petrova O., Gogoleva O., Meshcherov A., Balkin A., Vetchinkina E., Potapov K., Gogolev Y., and Korzun V., 2020, Rye snow mold-associated microdochium nivale strains inhabiting a common area: variability in genetics, morphotype, extracellular enzymatic activities, and virulence, Journal of Fungi, 6(4): 335. https://doi.org/10.3390/jof6040335 Hanosová H., Koprna R., Valík J., Knoppová L., Frébort I., Dzurová L., and Galuszka P., 2015, Improving field production of ergot alkaloids by application of gametocide on rye host plants, New Biotechnology, 32(6): 739-746. https://doi.org/10.1016/j.nbt.2015.01.008 Jiang N., Yan J., Liang Y., Shi Y.L., He Z.Z., Wu Y.T., Zeng Q., Liu X.L., and Peng J.H., 2020, Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review, Rice, 13: 3. https://doi.org/10.1186/s12284-019-0358-y Mahmood K., Orabi J., Kristensen P., Sarup P., Jørgensen L., and Jahoor A., 2020, De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea), Scientific Reports, 10: 13475. https://doi.org/10.1038/s41598-020-70406-2 Marquez J., and Hajihassani A., 2023, Successional effects of cover cropping and deep tillage on suppression of plant-parasitic nematodes and soilborne fungal pathogens, Pest Management Science, 79(8): 2737-2747. https://doi.org/10.1002/ps.7450 Miedaner T., and Geiger H., 2015, Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet, Toxins, 7: 659-678. https://doi.org/10.3390/toxins7030659 Müller M., Kunz L., Schudel S., Lawson A., Kammerecker S., Isaksson J., Wyler M., Graf J., Sotiropoulos A., Praz C., Manser B., Wicker T., Bourras S., and Keller B., 2022, Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat, Proceedings of the National Academy of Sciences of the United States of America, 119(30): e2108808119. https://doi.org/10.1073/pnas.2108808119 Nnadi N., and Carter D., 2021, Climate change and the emergence of fungal pathogens, PLoS Pathogens, 17(4): e1009503. https://doi.org/10.1371/journal.ppat.1009503 Pitt J., and Miller J., 2017, A concise history of mycotoxin research, Journal of Agricultural and Food Chemistry, 65(33): 7021-7033. https://doi.org/10.1021/acs.jafc.6b04494 Ponomareva M., Gorshkov V., Ponomarev S., Mannapova G., Askhadullin D., Askhadullin D., Gogoleva O., Meshcherov A., and Korzun V., 2022, Resistance to snow mold as a target trait for rye breeding, Plants, 11(19): 2516. https://doi.org/10.3390/plants11192516 Ren T.H., Jiang Q., Sun Z., Ren Z., Tan F., Yang W., and Li Z., 2022, Development and characterization of novel wheat-rye 1RS•1BL translocation lines with high resistance to Puccinia striiformis f. sp. tritici, Phytopathology, 112(6): 1310-1315. https://doi.org/10.1094/PHYTO-07-21-0313-R Rojas E., Jensen B., Jørgensen H., Latz M., Esteban P., Ding Y., and Collinge D., 2020, Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat, Biological Control, 144: 104222. https://doi.org/10.1016/j.biocontrol.2020.104222

RkJQdWJsaXNoZXIy MjQ4ODYzNA==