MMR_2024v14n3

Molecular Microbiology Research 2024, Vol.14, No.3, 131-140 http://microbescipublisher.com/index.php/mmr 139 Mariz J., Franco-Duarte R., Cássio F., Pascoal C., and Fernandes I., 2021, Aquatic hyphomycete taxonomic relatedness translates into lower genetic divergence of the nitrate reductase gene, Journal of Fungi, 7(12): 1066. https://doi.org/10.3390/jof7121066 Michán C., Blasco J., and Alhama J., 2021, High‐throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments, Microbial Biotechnology, 14: 870-885. https://doi.org/10.1111/1751-7915.13763 Nava V., and Leoni B., 2020, A critical study of interactions between microplastics, microalgae and aquatic ecosystem function, Water Research, 188: 116476. https://doi.org/10.1016/j.watres.2020.116476 Nelson C., Kelly L., and Haas A., 2022, Microbial interactions with dissolved organic matter are central to coral reef ecosystem function and resilience, Annual study of Marine Science, 15: 431-460. https://doi.org/10.1146/annurev-marine-042121-080917 Pérez J., Ferreira V., Graça M., and Boyero L., 2021, Litter quality is a stronger driver than temperature of early microbial decomposition in oligotrophic streams: a microcosm study, Microbial Ecology, 82: 897-908. https://doi.org/10.1007/s00248-021-01858-w Pimentão A., Pascoal C., Castro B., and Cássio F., 2019, Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition, The Science of the Total Environment, 172: 135676. https://doi.org/10.1016/j.scitotenv.2019.135676 Rempel A., Gutkoski J., Nazari M., Biolchi G., Cavanhi V., Treichel H., and Colla L., 2021, Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment, The Science of the Total Environment, 772: 144918. https://doi.org/10.1016/j.scitotenv.2020.144918. Ribeiro H., Martins A., Gonçalves M., Guedes M., Tomasino M., Dias N., Dias A., Mucha A., Carvalho M., Almeida C., Ramos S., Almeida J., Silva E., and Magalhães C., 2019, Development of an autonomous biosampler to capture in situ aquatic microbiomes, PLoS ONE, 14(5): e0216882. https://doi.org/10.1371/journal.pone.0216882 Sagova-Mareckova M., Boenigk J., Bouchez A., Čermáková K., Chonova T., Cordier T., Eisendle U., Eleršek T., Fazi S., Fleituch T., Frühe L., Gajdošová M., Graupner N., Haegerbaeumer A., Kelly A., Kopecký J., Leese F., Nõges P., Orlić S., Panksep K., Pawłowski J., Petrusek A., Piggott J., Rusch J., Salis R., Schenk J., Šimek K., Šťovíček A., Strand D., Vasquez M., Vrålstad T., Zlatkovic S., Zupančič M., and Stoeck T., 2020, Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring, Water Research, 191: 116767. https://doi.org/10.1016/j.watres.2020.116767 Saleem A., Naureen I., Tasleem G., Anwar R., Mairaj M., Muddassar H., and Rana N., 2022, Microbial assisted bioremediation of polluted water, Haya: The Saudi Journal of Life Sciences, 7(4): 116-127. https://doi.org/10.36348/sjls.2022.v07i04.001 Sarhan A., 2023, Microbial bioremediation: effective strategy for removal of pollutants from contaminated industrial water of textile mills plants. an overview, International Journal of Pharmaceutical and Bio-Medical Science, 3(10): 536-542. https://doi.org/10.47191/ijpbms/v3-i10-06 Savenko N., and Prysiazhniuk N., 2022, Role of microorganisms of the aquatic environment in the formation of the ecological and sanitary state of water bodies, Tehnologìâ Virobnictva ì Pererobki Produktìv Tvarinnictva, 2: 78-84. https://doi.org/10.33245/2310-9289-2022-175-2-78-84 Sehnal L., Brammer-Robbins E., Wormington A., Bláha L., Bisesi J., Larkin I., Martyniuk C., Simonin M., and Adamovsky O., 2021, Microbiome composition and function in aquatic vertebrates: small organisms making big impacts on aquatic animal health, Frontiers in Microbiology, 12: 567408. https://doi.org/10.3389/fmicb.2021.567408 Stock W., Callens M., Houwenhuyse S., Schols R., Goel N., Coone M., Theys C., Delnat V., Boudry A., Eckert E., Laspoumaderes C., Grossart H., Meester L., Stoks R., Sabbe K., and Decaestecker E., 2021, Human impact on symbioses between aquatic organisms and microbes, Aquatic Microbial Ecology, 87: 113-138. https://doi.org/10.3354/AME01973 Suominen S., Dombrowski N., Damsté J., and Villanueva L., 2019, A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone, Environmental Microbiology, 23: 2709-2728. https://doi.org/10.1111/1462-2920.14902 Tekere M., 2019, Microbial bioremediation and different bioreactors designs applied, Biotechnology and Bioengineering, 14: 1-19. https://doi.org/10.5772/intechopen.83661 Touliabah H., El-sheekh M., Ismail M., and El-Kassas H., 2022, A study of microalgae- and cyanobacteria-based biodegradation of organic pollutants, Molecules, 27(3): 1141. https://doi.org/10.3390/molecules27031141 Trombetta T., Vidussi F., Roques C., Scotti M., and Mostajir B., 2020, Marine microbial food web networks during phytoplankton bloom and non-bloom periods: warming favors smaller organism interactions and intensifies trophic cascade, Frontiers in Microbiology, 11: 502336. https://doi.org/10.3389/fmicb.2020.502336

RkJQdWJsaXNoZXIy MjQ4ODYzNA==