Molecular Microbiology Research 2024, Vol.14, No.2, 99-108 http://microbescipublisher.com/index.php/mmr 107 Christakis C., Daskalogiannis G., Chatzaki A., Markakis E., Mermigka G., Sagia A., Rizzo G., Catara V., Lagkouvardos I., Studholme D., and Sarris P., 2021, Endophytic bacterial isolates from halophytes demonstrate phytopathogen biocontrol and plant growth promotion under high salinity, Frontiers in Microbiology, 12: 681567. https://doi.org/10.3389/fmicb.2021.681567 Comby M., Lacoste S., Baillieul F., Profizi C., and Dupont J., 2016, Spatial and Temporal Variation of Cultivable Communities of Co-occurring Endophytes and Pathogens in Wheat, Frontiers in Microbiology, 7: 403. https://doi.org/10.3389/fmicb.2016.00403 Ek-Ramos M., Gomez-flores R., Orozco-Flores A., Rodríguez-Padilla C., González-Ochoa G., and Tamez-guerra P., 2019, Bioactive products from plant-endophytic gram-positive bacteria, Frontiers in Microbiology, 10: 463. https://doi.org/10.3389/fmicb.2019.00463 Grabka R., d’Entremont T., Adams S., Walker A., Tanney J., Abbasi P., and Ali S., 2022, Fungal endophytes and their role in agricultural plant protection against pests and pathogens, Plants, 11(3): 384. https://doi.org/10.3390/plants11030384 Herrera S., Grossi C., Zawoznik M., and Groppa M., 2016, Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum, Microbiological Research, 186-187: 37-43. https://doi.org/10.1016/j.micres.2016.03.002 Kaul S., Sharma T., and Dhar M., 2016, “Omics” tools for better understanding the plant–endophyte interactions, Frontiers in Plant Science, 7: 955. https://doi.org/10.3389/fpls.2016.00955 Khare E., Mishra J., and Arora N., 2018, Multifaceted interactions between endophytes and plant: developments and prospects, Frontiers in Microbiology, 9: 2732. https://doi.org/10.3389/fmicb.2018.02732 Kuźniar A., Włodarczyk K., Grządziel J., Goraj W., Galazka A., and Wolińska A., 2019, Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivumL. (cv. 'Hondia') and the first report of microbiota in Triticum spelta L. (cv. 'Rokosz'), Systematic and Applied Microbiology, 43(1): 126025. https://doi.org/10.1016/j.syapm.2019.126025 Latz M., Kerrn M., Sørensen H., Collinge D., Jensen B., Brown J., Madsen A., and Jørgensen H., 2020, Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment, The Science of the Total Environment, 759: 143804. https://doi.org/10.1016/j.scitotenv.2020.143804 Llorens E., Sharon O., Camañes G., García-Agustín P., and Sharon A., 2019, Endophytes from wild cereals protect wheat plants from drought by alteration of physiological responses of the plants to water stress, Environmental Microbiology, 21(9): 3299-3312. https://doi.org/10.1111/1462-2920.14530 Murphy B., Nieto L., Doohan F., and Hodkinson T., 2015, Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes, Mycology, 6: 139-150. https://doi.org/10.1080/21501203.2015.1070213 Noel Z., Roze L., Breunig M., and Trail F., 2021, Endophytic fungi as a promising biocontrol agent to protect wheat fromFusarium graminearumhead blight, Plant Disease, 106(2): 595-602. https://doi.org/10.1094/PDIS-06-21-1253-RE Ofek-Lalzar M., Gur Y., Ben-Moshe S., Sharon O., Kosman E., Mochli E., and Sharon A., 2016, Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis, FEMS Microbiology Ecology, 92(10): fiw152. https://doi.org/10.1093/femsec/fiw152 Pereira S., ans Castro P., 2014, Diversity and characterization of culturable bacterial endophytes fromZea mays and their potential as plant growth-promoting agents in metal-degraded soils, Environmental Science and Pollution Research, 21: 14110-14123. https://doi.org/10.1007/s11356-014-3309-6 Pour-Aboughadareh A., Kianersi F., Poczai P., and Moradkhani H., 2021, Potential of wild relatives of wheat: ideal genetic resources for future breeding programs, Agronomy, 11(8): 1656. https://doi.org/10.3390/agronomy11081656 Rana K., Kour D., Kaur T., Sheikh I., Yadav A., Kumar V., Suman A., and Dhaliwal H., 2020, Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. proceedings of the national academy of sciences, India Section B: Biological Sciences, 90: 969-979. https://doi.org/10.1007/s40011-020-01168-0 Ripa F., Cao W.D., Tong S., and Sun J.G., 2019, Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi, BioMed Research International, 2019(1): 1-12. https://doi.org/10.1155/2019/6105865 Riva V., Mapelli F., Bagnasco A., Mengoni A., and Borin S., 2022, A meta-analysis approach to defining the culturable core of plant endophytic bacterial communities, Applied and Environmental Microbiology, 88(6): e02537-21. https://doi.org/10.1128/aem.02537-21
RkJQdWJsaXNoZXIy MjQ4ODYzNA==