MMR_2024v14n2

Molecular Microbiology Research 2024, Vol.14, No.2, 79-91 http://microbescipublisher.com/index.php/mmr 90 Padbhushan R., Kumar U., Sharma S., Rana D., Kumar R., Kohli A., Kumari P., Parmar B., Kaviraj M., Sinha A., Annapurna K., and Gupta V., 2022, Impact of Land-Use Changes on Soil Properties and Carbon Pools in India: A Meta-analysis, 9: 794866. https://doi.org/10.3389/fenvs.2021.794866 Pastorelli R., Paletto A., Agnelli A., Lagomarsino A., and Meo I., 2020, Microbial communities associated with decomposing deadwood of downy birch in a natural forest in Khibiny Mountains (Kola Peninsula Russian Federation, Forest Ecology and Management, 455: 117643. https://doi.org/10.1016/j.foreco.2019.117643 Petraglia A., Cacciatori C., Chelli S., Fenu G., Calderisi G., Gargano D., Abeli T., Orsenigo S., and Carbognani M., 2018, Litter decomposition: effects of temperature driven by soil moisture and vegetation type, Plant and Soil, 435: 187-200. https://doi.org/10.1007/s11104-018-3889-x Pimentão A., Pascoal C., Castro B., and Cássio F., 2019, Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition, The Science of the Total Environment, 712: 135676. https://doi.org/10.1016/j.scitotenv.2019.135676 Purahong W., Wubet T., Lentendu G., Schloter M., Pecyna M., Kapturska D., Hofrichter M., Kruger D., and Buscot F., 2016, Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition, Molecular Ecology, 25(16): 4059-4074. https://doi.org/10.1111/mec.13739 Pérez J., Ferreira V., Graça M., and Boyero L., 2021, Litter quality is a stronger driver than temperature of early microbial decomposition in oligotrophic streams: a microcosm study, Microbial Ecology, 82: 897-908. https://doi.org/10.1007/s00248-021-01858-w Raczka N., Piñeiro J., Tfaily M., Chu R., Lipton M., Paša-Tolić L., Morrissey E., and Brzostek E., 2021, Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil, Scientific Reports, 11: 19320. https://doi.org/10.1038/s41598-021-97942-9 RossiF., Mallet C., Portelli C., Donnadieu F., Bonnemoy F., and Artigas J., 2019, Stimulation or inhibition: Leaf microbial decomposition in streams subjected to complex chemical contamination, The Science of the Total Environment, 648: 1371-1383. https://doi.org/10.1016/j.scitotenv.2018.08.197 Sierra C., Malghani S., and Loescher H., 2017, Interactions among temperature moisture and oxygen concentrations in controlling decomposition rates in a boreal forest soil, Biogeosciences, 14: 703-710. https://doi.org/10.5194/BG-14-703-2017 Sierra C., Trumbore S., Davidson E., Vicca S., and Janssens I., 2015, Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture, Journal of Advances in Modeling Earth Systems, 7: 335-356. https://doi.org/10.1002/2014MS000358 Simarmata R., Widowati T., Nurjanah L., N., and Lekatompessy S., 2021, The role of microbes in organic material decomposition and formation of compost bacterial communities, IOP Conference Series: Earth and Environmental Science, 762: 012044. https://doi.org/10.1088/1755-1315/762/1/012044 Steidinger B., Crowther T., Liang J., Nuland M., Werner G., Reich P., Nabuurs G., de-Miguel S., Zhou M., Picard N., Hérault B., Zhao X., Zhang C., Routh D., Peay K., and Marcon E., 2019, Climatic controls of decomposition drive the global biogeography of forest-tree symbioses, Nature, 569: 404-408. https://doi.org/10.1038/s41586-019-1128-0 Suseela V., and Tharayil N., 2018, Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress‐induced modifications in plant chemistry, Global Change Biology, 24: 1428-1451. https://doi.org/10.1111/gcb.13923 Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Monteiro L., Saraiva J., Human Z., Cajthaml T., Rocha U., and Baldrian P., 2021, Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition, mSystems, 6(1): e01078-20. https://doi.org/10.1128/mSystems.01078-20 Wang D., Nianpeng H., Wang Q., Lu Y., Wang Q., Xu Z., and Zhu J., 2016, Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains Northeast China, Pedosphere, 26: 399-407. https://doi.org/10.1016/S1002-0160(15)60052-2 Wang Q., Huang Q., Wang J., Khan M., Guo G., Liu Y., Hu S., Jin F., Wang J., and Yu Y., 2021, Dissolved organic carbon drives nutrient cycling via microbial community in paddy soil, Chemosphere, 285: 131472. https://doi.org/10.1016/j.chemosphere.2021.131472 Xu M., Li X.L., Kuyper T., Xu M., Li X.L., and Zhang J.L., 2021, High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau, Global Change Biology, 27(10): 2061-2075. https://doi.org/10.1111/gcb.15553 Yang Y., Chen X.L., Liu L.X., Li T., Dou Y.X., Qiao J.B., Wang Y.Q., An S.S., and Chang S., 2022, Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: a global meta‐analysis, Global Change Biology, 28(21): 6446-6461. https://doi.org/10.1111/gcb.16361

RkJQdWJsaXNoZXIy MjQ4ODYzNA==