Molecular Microbiology Research 2024, Vol.14, No.2, 79-91 http://microbescipublisher.com/index.php/mmr 89 Figueroa L., Maran A., and Pelini S., 2021, Increasing temperatures reduce invertebrate abundance and slow decomposition, PLoS ONE, 16(11): e0259045. https://doi.org/10.1371/journal.pone.0259045 García‐Palacios P., Mckie B., Handa I., Frainer A., Frainer A., and Hättenschwiler S., 2016, The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes, Functional Ecology, 30: 819-829. https://doi.org/10.1111/1365-2435.12589 Glassman S., Weihe C., Li J., Albright M., Looby C., Martiny A., Treseder K., Allison S., and Martiny J., 2018, Decomposition responses to climate depend on microbial community composition, Proceedings of the National Academy of Sciences, 115: 11994-11999. https://doi.org/10.1073/pnas.1811269115 Gora E., Lucas J., and Yanoviak S., 2019, Microbial composition and wood decomposition rates vary with microclimate from the ground to the canopy in a tropical forest, Ecosystems, 22: 1206-1219. https://doi.org/10.1007/s10021-019-00359-9 Gu L., Wu J.Y., and Hua Z.L., 2021, Benthic prokaryotic microbial community assembly and biogeochemical potentials in E. coli-stressed aquatic ecosystems during plant decomposition, Environmental pollution, 275: 116643. https://doi.org/10.1016/j.envpol.2021.116643 Hicks L., Lajtha K., and Rousk J., 2021, Nutrient limitation may induce microbial mining for resources from persistent soil organic matter, Ecology, 102(6): e03328. https://doi.org/10.1002/ecy.3328 Huang L., Ye J., Jiang K., Wang Y., and Li Y., 2021, Oil contamination drives the transformation of soil microbial communities: co-occurrence pattern metabolic enzymes and culturable hydrocarbon-degrading bacteria, Ecotoxicology and Environmental Safety, 225: 112740. https://doi.org/10.1016/j.ecoenv.2021.112740 Jia X., Zhong Y., Liu J., Zhu G., Shangguan Z., and Yan W., 2020, Effects of nitrogen enrichment on soil microbial characteristics: from biomass to enzyme activities, Geoderma, 366: 114256. https://doi.org/10.1016/j.geoderma.2020.114256 Li H., Yang S., Semenov M., Yao F., Ye J., Bu R., Ma R., Lin J., Kurganova I., Wang X., Deng Y., Kravchenko I., Jiang Y., and Kuzyakov Y., 2021, Temperature sensitivity of SOM decomposition is linked with a K‐selected microbial community, Global Change Biology, 27(12): 2763-2779. https://doi.org/10.1111/gcb.15593 Li Y., Nie C., Liu Y.H., Du W., and He P., 2019, Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland, The Science of the Total Environment, 654: 264-274. https://doi.org/10.1016/j.scitotenv.2018.11.031 Lobb B., Hodgson R., Lynch M., Mansfield M., Cheng J., Charles T., Neufeld J., Craig P., and Doxey A., 2020, Time series resolution of the fish necrobiome reveals a decomposer succession involving toxigenic bacterial pathogens, mSystems, 5(2): e00145-20. https://doi.org/10.1128/mSystems.00145-20 Malik A., Puissant J., Buckeridge K., Goodall T., Jehmlich N., Chowdhury S., Gweon H., Peyton J., Mason K., Agtmaal M., Blaud A., Clark I., Whitaker J., Pywell R., Ostle N., Gleixner G., and Griffiths R., 2018, Land use driven change in soil pH affects microbial carbon cycling processes, Nature Communications, 9: 3591. https://doi.org/10.1038/s41467-018-05980-1 Manzoni S., Chakrawal A., and Ledder G., 2023, Decomposition rate as an emergent property of optimal microbial foraging, Frontiers in Ecology and Evolution, 11: 1094269. https://doi.org/10.3389/fevo.2023.1094269 Maron P., Sarr A., Kaisermann A., Lévêque J., Mathieu O., Guigue J., Karimi B., Bernard L., Dequiedt S., Terrat S., Chabbi A., and Ranjard L., 2018, High microbial diversity promotes soil ecosystem functioning, Applied and Environmental Microbiology, 84(9): e02738-17. https://doi.org/10.1128/AEM.02738-17 Mason A., McKee-Zech H., Hoeland K., Davis M., Campagna S., Steadman D., and DeBruyn J., 2022, Body mass index (BMI) impacts soil chemical and microbial response to human decomposition, mSphere, 7(5): e00325-22. https://doi.org/10.1128/msphere.00325-22 Mason A., Taylor L., and DeBruyn J., 2023, Microbial ecology of vertebrate decomposition in terrestrial ecosystems, FEMS microbiology ecology, 99(2): fiad006. https://doi.org/10.1093/femsec/fiad006 Metcalf J., Xu Z., Weiss S., Lax S., Treuren W., Hyde E., Song S., Amir A., Larsen P., Sangwan N., Haarmann D., Humphrey G., Ackermann G., Thompson L., Lauber C., Bibat A., Nicholas C., Gebert M., Petrosino J., Reed S., Gilbert J., Lynne A., Bucheli S., Carter D., and Knight R., 2016, Microbial community assembly and metabolic function during mammalian corpse decomposition, Science, 351: 158-162. https://doi.org/10.1126/science.aad2646 Mori A., Cornelissen J., Fujii S., Okada K., Okada K., and Isbell F., 2020, A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver, Nature Communications, 11. https://doi.org/10.1038/s41467-020-18296-w
RkJQdWJsaXNoZXIy MjQ4ODYzNA==