Molecular Microbiology Research 2024, Vol.14, No.2, 65-78 http://microbescipublisher.com/index.php/mmr 78 Schwarzenbach R., Escher, B., Fenner, K., Hofstetter, T., Johnson, C., Gunten, U., and Wehrli, B., 2006, The Challenge of Micropollutants in Aquatic Systems, Science, 313: 1072-1077. https://doi.org/10.1126/science.1127291 Souza R., Armanhi J., and Arruda P., 2020, From microbiome to traits: designing synthetic microbial communities for improved crop resiliency, Frontiers in Plant Science, 11: 1179. https://doi.org/10.3389/fpls.2020.01179 Tran K., Lee H., Thai T., Shen J., Eyun S., and Na D., 2021, Synthetically engineered microbial scavengers for enhanced bioremediation, Journal of hazardous materials, 419: 126516. https://doi.org/10.1016/j.jhazmat.2021.126516 Ugrina M., and Jurić A., 2023, Current trends and future perspectives in the remediation of polluted water, soil and air—a review, Processes, 11: 3270. https://doi.org/10.20944/preprints202309.2127.v1 Wang Q., Song X., Wei C., Jin P., Chen X., Tang Z., Li K., Ding X., and Fu H., 2021, In situ remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study, The Science of the total environment, 805: 150260. https://doi.org/10.1016/j.scitotenv.2021.150260 Wu C., Li F., Yi S.W., and Ge F., 2021, Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: advances and ecological risk assessment.. Journal of environmental management, 296: 113185. https://doi.org/10.1016/j.jenvman.2021.113185 Xiang L., Harindintwali J., Wang F., Redmile-Gordon M., Chang S., Fu Y., He C., Muhoza B., Brahushi F., Bolan N., Jiang X., Ok Y., Rinklebe J., Schaeffer A., Zhu Y., Tiedje J., and Xing B., 2022, Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants, Environmental Science & Technology, 56: 16546-16566. https://doi.org/10.1021/acs.est.2c02976 Yang Y., Zeng Z.T., Zhang C., Huang D.L., Zeng G.M., Xiao R., Lai C., Zhou C.Y., Guo H., Xue W.J., Cheng M., Wang W.J., and Wang J.J., 2018, Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight, Chemical Engineering Journal, 349: 808-821. https://doi.org/10.1016/J.CEJ.2018.05.093 Zhang C.W., Kong C.P., Tratnyek P., and Qin C.Y., 2022, Generation of reactive oxygen species and degradation of pollutants in the Fe2+/O2/Tripolyphosphate system: regulated by the concentration ratio of Fe2+ and tripolyphosphate, Environmental science & technology, 56(7): 4367-4376. https://doi.org/10.1021/acs.est.1c07467 Zhang P.F., Spaepen S., Bai Y., Hacquard S., and Garrido-Oter R., 2021, Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities, ISME Communications, 1(1): 73. https://doi.org/10.1038/s43705-021-00077-1 Zhao Y., Yu L., Song C.Y., Chen Z.L., Meng F.Y., and Song M., 2022, Selective degradation of electron-rich organic pollutants induced by CuO@Biochar: the key role of outer-sphere interaction and singlet oxygen, Environmental Science & Technology, 56(15): 10710-10720. https://doi.org/10.1021/acs.est.2c01759 Zhu B.T., Chen Y.Y., and Wei N., 2019, Engineering biocatalytic and biosorptive materials for environmental applications, Trends in biotechnology, 37(6): 661-676. https://doi.org/10.1016/j.tibtech.2018.11.005
RkJQdWJsaXNoZXIy MjQ4ODYzNA==