MMR_2024v14n2

Molecular Microbiology Research 2024, Vol.14, No.2, 65-78 http://microbescipublisher.com/index.php/mmr 76 Ali S., Abbas Z., Rizwan M., Zaheer I., Yavas I., Ünay A., Abdel-Daim M., Bin-Jumah M., Hasanuzzaman M., and Kalderis D., 2020, Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review, Sustainability, 12: 1927. https://doi.org/10.3390/su12051927 Armanhi J., Souza R., Biazotti B., Yassitepe J., and Arruda P., 2021, Modulating drought stress response of maize by a synthetic bacterial community, Frontiers in Microbiology, 12: 747541. https://doi.org/10.3389/fmicb.2021.747541 Arnault G., Marais C., Préveaux A., Briand M., Poisson A., Sarniguet A., Barret M., and Simonin M., 2023, Seedling microbiota engineering using bacterial synthetic community inoculation on seeds, bioRxiv, 100(4): fiae027. https://doi.org/10.1101/2023.11.24.568582 Baroudi F., Alam J., Fajloun Z., and Millet M., 2020, Snail as sentinel organism for monitoring the environmental pollution; a review. Ecological Indicators, 113: 106240. https://doi.org/10.1016/j.ecolind.2020.106240 Bartlow A., Machalaba C., Karesh W., and Fair J., 2021, Biodiversity and global health: intersection of health, security, and the environment, Health Security, 19(2): 214. https://doi.org/10.1089/hs.2020.0112 Bhatt P., Gangola S., Bhandari G., Zhang W., Maithani D., Mishra S., and Chen S., 2020, New insights into the degradation of synthetic pollutants in contaminated environments, Chemosphere, 268: 128827. https://doi.org/10.1016/j.chemosphere.2020.128827 Brune K., and Bayer T., 2012, Engineering microbial consortia to enhance biomining and bioremediation, Frontiers in Microbiology, 3: 203. https://doi.org/10.3389/fmicb.2012.00203 Chen H., Xiao T., Ning Z., Li Q., Xiao E., Liu Y., Xiao Q., Lan X., Ma L., and Lu F., 2020, In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: performance and response of microbial communities to low pH and elevated Fe, Bioresource Technology, 317: 123985. https://doi.org/10.1016/j.biortech.2020.123985 Cheng J., Li S., Yang X., Huang X., Lu Z., Xu J., and He Y., 2021, Regulating the dechlorination and methanogenesis synchronously to achieve a win-win remediation solution for γ-hexachlorocyclohexane polluted anaerobic environment, Water Research, 203: 117542. https://doi.org/10.1016/j.watres.2021.117542 Coker J., Zhalnina K., Marotz C., Thiruppathy D., Tjuanta M., D’Elia G., Hailu R., Mahosky T., Rowan M., Northen T., and Zengler K., 2022, A reproducible and tunable synthetic soil microbial community provides new insights into microbial ecology, mSystems, 7(6): e00951-22. https://doi.org/10.1128/msystems.00951-22 Eng A., and Borenstein E., 2019, Microbial community design: methods, applications, and opportunities, Current Opinion in Biotechnology, 58: 117-128. https://doi.org/10.1016/j.copbio.2019.03.002 Fan R., Tian H., Wu Q., Yi Y., Yan X., and Liu B., 2021, Mechanism of bio-electrokinetic remediation of pyrene contaminated soil: Effects of an electric field on the degradation pathway and microbial metabolic processes, Journal of hazardous materials, 422: 126959. https://doi.org/10.1016/j.jhazmat.2021.126959 Gong Z., Wang G., Shao S., Wang M., Lu K., and Gao S., 2021, Co-degradation of coexisting pollutants methylparaben (mediators) and amlodipine in enzyme-mediator systems: Insight into the mediating mechanism, Journal of Hazardous Materials, 423(Pt A): 127112. https://doi.org/10.1016/j.jhazmat.2021.127112 Granell C., Havlik D., Schade S., Sabeur Z., Delaney C., Pielorz J., Usländer T., Mazzetti P., Schleidt K., Kobernus M., Havlik F., Bodsberg N., Berre A., and Lorenzo J., 2016, Future Internet technologies for environmental applications, Environmental Modelling & Software, 78: 1-15. https://doi.org/10.1016/J.ENVSOFT.2015.12.015 Hart R., In-na P., Kapralov M., Lee J., and Caldwell G., 2021, Textile-based cyanobacteria biocomposites for potential environmental remediation applications, Journal of Applied Phycology, 33: 1525-1540. https://doi.org/10.1007/s10811-021-02410-6 Juhanson J., Truu J., Heinaru E., and Heinaru A., 2009, Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment, FEMS Microbiology Ecology, 70(3): 446-455. https://doi.org/10.1111/j.1574-6941.2009.00754.x Kehe J., Kulesa A., Ortiz A., Ackerman C., Thakku S., Sellers D., Kuehn S., Gore J., Friedman J., and Blainey P., 2019, Massively parallel screening of synthetic microbial communities, Proceedings of the National Academy of Sciences, 116: 12804-12809. https://doi.org/10.1073/pnas.1900102116 Kim H., Du W., and Ismagilov R., 2011, Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(ii), Integrative Biology: Quantitative Biosciences from Nano to Macro, 3(2): 126-133. https://doi.org/10.1039/c0ib00019a Kumar A., Yadav A., Mondal R., Kour D., Subrahmanyam G., Shabnam A., Khan S., Yadav K., Sharma G., Cabral-Pinto M., Fagodiya R., Gupta D., Hota S., and Malyan S., 2021a, Myco-remediation: a mechanistic understanding of contaminants alleviation from natural environment and future prospect, Chemosphere, 284: 131325. https://doi.org/10.1016/j.chemosphere.2021.131325

RkJQdWJsaXNoZXIy MjQ4ODYzNA==