Bt Research 2024, Vol.15, No.5, 248-256 http://microbescipublisher.com/index.php/bt 255 Kumar S., Nehra M., Dilbaghi N., Marrazza G., Hassan A., and Kim K., 2019, Nano-based smart pesticide formulations: Emerging opportunities for agriculture, Journal of controlled release, 294: 131-153. https://doi.org/10.1016/j.jconrel.2018.12.012 Machado A., Zarfl C., Rehse S., and Kloas W., 2017, Low-dose effects: nonmonotonic responses for the toxicity of a Bacillus thuringiensis biocide to Daphnia magna, Environmental Science and Technology, 51(3): 1679-1686. https://doi.org/10.1021/acs.est.6b03056 Marques L., Lepping M., Castro B., Santos A., Rossetto J., Nunes M., Silva O., Moscardini V., Sá V., Nowatzki T., Dahmer M., and Gontijo P., 2021, Field efficacy of Bt cotton containing events DAS-21023-5×DAS-24236-5 ×SYN-IR102-7 against lepidopteran pests and impact on the non-target arthropod community in Brazil, PLoS ONE, 16(5): e0251134. https://doi.org/10.1371/journal.pone.0251134 Melanie M., Miranti M., Kasmara H., Malini D., Husodo T., Panatarani C., Joni I., and Hermawan W., 2022, Nanotechnology-based bioactive antifeedant for plant protection, Nanomaterials, 12(4): 630. https://doi.org/10.3390/nano12040630 Meng F.B., Lei Y.T., Zhang Q., Li Y.C., Chen W.J., and Liu D.Y., 2022, Encapsulation of Zanthoxylum bungeanumessential oil to enhance flavor stability and inhibit lipid oxidation of Chinese-style sausage, Journal of the Science of Food and Agriculture, 102(10): 4035-4045. https://doi.org/10.1002/jsfa.11752 Monteiro R., Câmara M., Oliveira J., Campos E., Carvalho L., Proença P., Guilger-Casagrande M., Lima R., Nascimento J., Gonçalves K., Polanczyk R., and Fraceto L., 2021, Zein based-nanoparticles loaded botanical pesticides in pest control: an enzyme stimuli-responsive approach aiming sustainable agriculture, Journal of Hazardous Materials, 417: 126004. https://doi.org/10.1016/j.jhazmat.2021.126004 Narkhede C., Suryawanshi R., Patil C., Borase H., and Patil S., 2016, Use of protease inhibitory gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: a novel approach for pest control, Biocatalysis and Agricultural Biotechnology, 8: 8-12. https://doi.org/10.1016/J.BCAB.2016.07.004 Oliveira J., Fraceto L., Bravo A., and Polanczyk R., 2021, Encapsulation strategies for Bacillus thuringiensis: from now to the future, Journal of Agricultural and Food Chemistry, 69(16): 4564-4577. https://doi.org/10.1021/acs.jafc.0c07118 Opisa S., Akutse K., Plessis H., Fiaboe K., and Ekesi S., 2020, Chemical additives enhance the activity of a Bt‐based biopesticide targeting the beet webworm larvae, Journal of Applied Entomology, 144: 26-32. https://doi.org/10.1111/jen.12706 Pan X.H., Huang T.Z., Fang Y., Rao W.H., Guo X.P., Nie D.Y., Zhang D.Y., Cao F., Guan X., and Chen Z., 2021, Effect of Bacillus thuringiensis biomass and insecticidal activity by cultivation with vegetable wastes, Royal Society Open Science, 8(3): 1-8. https://doi.org/10.1098/rsos.201564 Pavoni L., Giovanni B., Maggi F., and Bonacucina G., 2019, Green nanoemulsion interventions for biopesticide formulations, Nano-Biopesticides Today and Future Perspectives, 5: 133-160. https://doi.org/10.1016/B978-0-12-815829-6.00005-X Rad S., Shirazi M., Kargari A., and Marzban R., 2016, Application of membrane separation technology in downstream processing of Bacillus thuringiensis biopesticide: a review, Journal of Membrane Science and Research, 2: 66-77. https://doi.org/10.22079/JMSR.2016.19154 Rodríguez P., Cerda A., Font X., Sanchez A., and Artola A., 2019, Valorisation of biowaste digestate through solid state fermentation to produce biopesticides fromBacillus thuringiensis, Waste Management, 93: 63-71. https://doi.org/10.1016/J.WASMAN.2019.05.026 Rojas N., Lewkowicz E., and Nóbile M., 2018, Alternative low-cost process for large-scale production of Bacillus thuringiensis in a simple and novel culture system, Journal of Environmental Science and Health, Part B, 53(11): 719-728. https://doi.org/10.1080/03601234.2018.1480156 Santos C., Nascimento J., Gonçalves K., Smaniotto G., Zechin L., Ferreira M., and Polanczyk R., 2021, Compatibility of Bt biopesticides and adjuvants for Spodoptera frugiperda control, Scientific Reports, 11: 5271. https://doi.org/10.1038/s41598-021-84871-w Sayed A., and Behle R., 2017, Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores, Biocontrol Science and Technology, 27: 461-474. https://doi.org/10.1080/09583157.2017.1303662 Shi N.Q., Zhou J., Walker J., Li L., Hong J., Olsen K., Tang J., Ackermann R., Wang Y., Qin B., Schwendeman A., and Schwendeman S., 2020, Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray drying, Journal of Controlled Release, 321: 756-772. https://doi.org/10.1016/j.jconrel.2020.01.023 Wang W., 2024, Developing durable resistance to wheat diseases: integration of molecular breeding techniques, Molecular Pathogens, 15(3): 106-118. https://doi.org/10.5376/mp.2024.15.0011
RkJQdWJsaXNoZXIy MjQ4ODYzNA==