Bt Research 2024, Vol.15, No.5, 240-247 http://microbescipublisher.com/index.php/bt 247 Huang K.Y., He H.B., Wang S., Zhang M., Chen X.W., Deng Z.Y., Ni X.Z., and Li X.C., 2023, Sequential and simultaneous interactions of plant allelochemical flavone, Bt Toxin Vip3A, and insecticide emamectin benzoate in Spodoptera frugiperda, Insects, 14(9): 736. https://doi.org/10.3390/insects14090736 Huang Y.X., Qin Y., Feng H.Q., Wan P., and Li Z.H., 2017, Modeling the evolution of insect resistance to one- and two-toxin Bt-crops in spatially heterogeneous environments, Ecological Modelling, 347: 72-84. https://doi.org/10.1016/J.ECOLMODEL.2017.01.001 Mendoza-Almanza G., Esparza-Ibarra E., Ayala-Luján J., Mercado-Reyes M., Godina-González S., Hernández-Barrales M., and Olmos-Soto J., 2020, The cytocidal spectrum of Bacillus thuringiensis toxins: from insects to human cancer cells, Toxins, 12(5): 301. https://doi.org/10.3390/toxins12050301 Rabelo M., Matos J., Orozco-Restrepo S., Paula-Moraes S., and Pereira E., 2020, Like parents, like offspring? Susceptibility to Bt toxins, development on dual-gene Bt cotton, and parental effect of Cry1Ac on a nontarget lepidopteran pest, Journal of Economic Entomology, 113(3): 1234-1242. https://doi.org/10.1093/jee/toaa051 Shi P.J., Wei J.Z., Sandhu H., and Liang G.M., 2016, Capturing the interaction types of two Bt toxins Cry1Ac and Cry2Ab on suppressing the cotton bollworm by using multi‐exponential equations, Insect Science, 23(4): 649-654. https://doi.org/10.1111/1744-7917.12273 Shikov A., Malovichko Y., Skitchenko R., Nizhnikov A., and Antonets K., 2020, No more tears: mining sequencing data for novel Bt Cry toxins with CryProcessor, Toxins, 12(3): 204. https://doi.org/10.3390/toxins12030204 Tabashnik B., Fabrick J., and Carrière Y., 2023, Global patterns of insect resistance to transgenic Bt crops: the first 25 years, Journal of Economic Entomology, 116(2): 297-309. https://doi.org/10.1093/jee/toac183 Tay W., Mahon R., Heckel D., Walsh T., Downes S., James W., Lee S., Reineke A., Williams A., and Gordon K., 2015, Insect resistance to Bacillus thuringiensis Toxin Cry2Ab is conferred by mutations in an ABC transporter subfamily A protein, PLoS Genetics, 11(11): e1005534. https://doi.org/10.1371/journal.pgen.1005534 Torres J., Surya W., and Boonserm P., 2023, Channel formation in Cry toxins: an Alphafold-2 perspective, International Journal of Molecular Sciences, 24(23): 16809. https://doi.org/10.3390/ijms242316809 Wang W., 2024, AI based drug screening process: from data mining to candidate drug validation, Bioscience Method, 14(1): 37-49. https://doi.org/10.5376/bm.2024.15.0005 Wang S.H., Kain W., and Wang P., 2018, Bacillus thuringiensis Cry1A toxins exert toxicity by multiple pathways in insects, Insect Biochemistry and Molecular Biology, 102: 59-66. https://doi.org/10.1016/j.ibmb.2018.09.013 Zellner T., Romanek K., Rabe C., Schmoll S., Geith S., Heier E., Stich R., Burwinkel H., Keicher M., Bani-Harouni D., Navab N., Ahmadi S., and Eyer F., 2022, ToxNet: an artificial intelligence designed for decision support for toxin prediction, Clinical Toxicology, 61: 56-63. https://doi.org/10.1080/15563650.2022.2144345
RkJQdWJsaXNoZXIy MjQ4ODYzNA==