Bt_2024v15n5

Bt Research 2024, Vol.15, No.5, 240-247 http://microbescipublisher.com/index.php/bt 246 Acknowledgments I would like to express my gratitude to the reviewers for their valuable feedback, which helped improve the manuscript. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Badran A., Guzov V., Huai Q., Kemp M., Vishwanath P., Kain W., Nance A., Evdokimov A., Moshiri F., Turner K., Wang P., Malvar T., and Liu D., 2016, Continuous evolution of B. thuringiensis toxins overcomes insect resistance, Nature, 533: 58-63. https://doi.org/10.1038/nature17938 Bernardes R., Botina L., Silva F., Fernandes K., Lima M., and Martins G., 2021, Toxicological assessment of agrochemicals in bees using machine learning tools, Journal of Hazardous Materials, 424(Pt A): 127344. https://doi.org/10.1016/j.jhazmat.2021.127344 Borhani N., Ghaisari J., Abedi M., Kamali M., and Gheisari Y., 2021, A deep learning approach to predict inter-omics interactions in multi-layer networks, BMC Bioinformatics, 23: 53. https://doi.org/10.1186/s12859-022-04569-2 Campagne P., Smouse P., Pasquet R., Silvain J., Ru B., and Berg J., 2016, Impact of violated high‐dose refuge assumptions on evolution of Bt resistance, Evolutionary Applications, 9: 596-607. https://doi.org/10.1111/eva.12355 Campos S., Santana I., Silva C., Santos-Amaya O., Guedes R., and Pereira E., 2019, Bt-induced hormesis in Bt-resistant insects: theoretical possibility or factual concern? Ecotoxicology and Environmental Safety, 183: 109577. https://doi.org/10.1016/j.ecoenv.2019.109577 Chen T., 2024, Artificial intelligence and drug design: future prospects and ethical considerations, Computational Molecular Biology, 14(1): 9-19. https://doi.org/10.5376/cmb.2024.14.0002 Chen S.Q., Li T.C., Yang L., Zhai F., Jiang X.W., Xiang R.W., and Ling G.X., 2022, Artificial intelligence-driven prediction of multiple drug interactions, Briefings in Bioinformatics, 23(6): bbac427. https://doi.org/10.1093/bib/bbac427 Chen Z.W., He F., Xiao Y.T., Liu C.X., Li J.H., Yang Y.B., Ai H., Peng J.X., Hong H.Z., and Liu K.Y., 2015, Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac, Insect Biochemistry and Molecular Biology, 59: 1-17. https://doi.org/10.1016/j.ibmb.2015.01.014 Coates B., and Siegfried B., 2015, Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin, Insect biochemistry and molecular biology, 63: 86-96. https://doi.org/10.1016/j.ibmb.2015.06.003 Deans C., Sword G., and Behmer S., 2016, Nutrition as a neglected factor in insect herbivore susceptibility to Bt toxins, Current Opinion in Insect Science, 15: 97-103. https://doi.org/10.1016/j.cois.2016.04.005 Deng J.X., Wang Y.M., Yang F.Y., Liu Y., and Liu B., 2019, Persistence of insecticidal Cry toxins in Bt rice residues under field conditions estimated by biological and immunological assays, The Science of the Total Environment, 679: 45-51. https://doi.org/10.1016/j.scitotenv.2019.05.026 Dively G., Kuhar T., Taylor S., Doughty H., Holmstrom K., Gilrein D., Nault B., Ingerson-Mahar J., Whalen J., Reisig D., Frank D., Fleischer S., Owens D., Welty C., Reay-Jones F., Porter P., Smith J., Saguez J., Murray, S., Wallingford A., Byker H., Jensen B., Burkness E., Hutchison W., and Hamby K., 2020, Sweet corn sentinel monitoring for lepidopteran field-evolved resistance to Bt toxins, Journal of Economic Entomology, 114: 307-319. https://doi.org/10.1093/jee/toaa264 Dorman S., Kudenov M., Lytle A., Griffith E., and Huseth A., 2021, Computer vision for detecting field-evolved lepidopteran resistance to Bt maize, Pest Management Science, 77(11): 5236-5245. https://doi.org/10.1002/ps.6566 Dutta T., Veeresh A., Phani V., Kundu A., Santhoshkumar K., Mathur C., Sagar D., and Sreevathsa R., 2022, Molecular characterization and functional analysis of Cry toxin receptor‐like genes from the model insect Galleria mellonella, Insect Molecular Biology, 31: 434-446. https://doi.org/10.1111/imb.12770 Gassmann A., and Reisig D., 2022, Management of insect pests with Bt crops in the United States, Annual Review of Entomology, 68: 31-49. https://doi.org/10.1146/annurev-ento-120220-105502 Heckel D., 2021, The essential and enigmatic role of ABC transporters in Bt resistance of noctuids and other insect pests of agriculture, Insects, 12(5): 389. https://doi.org/10.3390/insects12050389 Huang J.L., Xu Y.J., Zuo Y.Y., Yang Y.H., Tabashnik B., and Wu Y.D., 2020, Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts, Insect Biochemistry and Molecular Biology, 121: 103361. https://doi.org/10.1016/j.ibmb.2020.103361

RkJQdWJsaXNoZXIy MjQ4ODYzNA==