Bt_2024v15n5

Bt Research 2024, Vol.15, No.5, 232-239 http://microbescipublisher.com/index.php/bt 239 Kain W., Cotto-Rivera R., and Wang P., 2022, Resistance of cabbage loopers to Bacillus thuringiensis (Bt) toxin Cry1F and to dual-Bt Toxin WideStrike cotton plants, Applied and Environmental Microbiology, 88(20): e01194-22. https://doi.org/10.1128/aem.01194-22 Li Y.J., Wang C., Ge L., Hu C., Wu G.G., Sun Y., Song L.L., Wu X., Pan A.H., Xu Q.Q., Shi J.L., Liang J.G., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Liao C.Y., Jin M.H., Cheng Y., Yang Y.B., Soberon M., Bravo A., Liu K.Y., and Xiao Y.T., 2022, Bacillus thuringiensis Cry1Ac protoxin and activated toxin exert differential toxicity due to a synergistic interplay of cadherin with ABCC transporters in the cotton bollworm, Applied and Environmental Microbiology, 88(7): e02505-21. https://doi.org/10.1128/aem.02505-21 Ni M., Ma W., Wang X.F., Gao M.J., Dai Y., Wei X.L., Zhang L., Peng Y.G., Chen S.Y., Ding L.Y., Tian Y., Li J., Wang H.P., Wang X.L., Xu G.W., Guo W.Z., Yang Y.H., Wu Y.D., Heuberger S., Tabashnik B., Zhang T.Z., and Zhu Z., 2017, Next‐generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance, Plant Biotechnology Journal, 15(9): 1204-1213. https://doi.org/10.1111/pbi.12709 Oliveira J., Negri B., Hernández-Martínez P., Basso M., and Escriche B., 2023, Mpp23Aa/Xpp37Aa insecticidal proteins fromBacillus thuringiensis (Bacillales: Bacillaceae) are highly toxic to Anthonomus grandis (Coleoptera: Curculionidae) larvae, Toxins, 15(1): 55. https://doi.org/10.3390/toxins15010055 Romeis J., Naranjo S., Meissle M., and Shelton A., 2019, Genetically engineered crops help support conservation biological control, Biological Control, 130: 136-154. https://doi.org/10.1016/J.BIOCONTROL.2018.10.001 Schrijver A., Clercq P., Maagd R., and Frankenhuyzen K., 2015, Relevance of Bt toxin interaction studies for environmental risk assessment of genetically modified crops, Plant Biotechnology Journal, 13: 1221-1223. https://doi.org/10.1111/PBI.12406. Tabashnik B., 2015, ABCs of Insect Resistance to Bt, PLoS Genetics, 11(11): e1005646. https://doi.org/10.1371/journal.pgen.1005646 Valtierra-de-Luis D., Villanueva M., Lai L., Williams T., and Caballero P., 2020, Potential of Cry10Aa and Cyt2Ba, two minority δ-endotoxins produced by Bacillus thuringiensis ser. israelensis, for the control of Aedes aegypti larvae, Toxins, 12(6): 355. https://doi.org/10.3390/toxins12060355 Wang Z.Y., Wang K., Bravo A., Soberon M., Cai J.L., Shu C.L., and Zhang J., 2020, Coexistence of cry9 with the vip3A Gene in an Identical Plasmid of Bacillus thuringiensis indicates their synergistic insecticidal toxicity, Journal of Agricultural and Food Chemistry, 68(47): 14081-14090. https://doi.org/10.1021/acs.jafc.0c05304 Wei J.Z., Guo Y.Y., Liang G.M., Wu K.M., Zhang J., Tabashnik B., and Li X.C, 2015, Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm, Scientific Reports, 5: 7714. https://doi.org/10.1038/srep07714 Wu Z.Q., 2024, Using Bacillus thuringiensis var. israelensis to control mosquito larvae in aquaculture (Aedes spp.): an ecological control strategy, Journal of Mosquito Research, 14(2): 67-75. https://doi.org/10.5376/jmr.2024.14.0008 Xu F.Q., 2024, Research on insect pathogen resistance based on GWAS: methods, challenges, and prospects, Molecular Entomology, 15(1): 8-17. https://doi.org/10.5376/me.2024.15.0002 Xue B., Wang M.L., Wang Z.Y., Shu C.L., Geng L.L., and Zhang J., 2023, Analysis of synergism between extracellular polysaccharide from Bacillus thuringensis subsp. kurstaki HD270 and insecticidal proteins, toxins, 15(10): 590. https://doi.org/10.3390/toxins15100590 Yang F., Kerns D., Little N., Brown S., Stewart S., Catchot A., Cook D., Gore J., Crow W., Lorenz G., Towles T., and Tabashnik B., 2022, Practical resistance to Cry toxins and efficacy of Vip3Aa in Bt cotton against Helicoverpa zea, Pest Management Science, 78(12): 5234-5242. https://doi.org/10.1002/ps.7142 Yang J., Quan Y.D., Sivaprasath P., Shabbir M., Wang Z.Y., Ferré J., and He K.L., 2018, Insecticidal Activity and synergistic combinations of ten different Bt toxins against Mythimna separata (walker), Toxins, 10(11): 454. https://doi.org/10.3390/toxins10110454 Zhao S., Jiang D., Wang F.L., Yang Y.H., Tabashnik B., and Wu Y.D., 2020, Independent and synergistic effects of knocking out two ABC transporter genes on resistance to Bacillus thuringiensis Toxins Cry1Ac and Cry1Fa in Diamondback Moth, Toxins, 13(1): 9. https://doi.org/10.3390/toxins13010009

RkJQdWJsaXNoZXIy MjQ4ODYzNA==