Bt Research 2024, Vol.15, No.5, 232-239 http://microbescipublisher.com/index.php/bt 238 Acknowledgments We thank Ms J. Zhang from the Institute of Life Science of Jiyang College of Zhejiang A&F University for his reading and revising suggestion. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Anderson J., Ellsworth P., Faria J., Head G., Owen M., Pilcher C., Shelton A., and Meissle M., 2019, Genetically engineered crops: importance of diversified integrated pest management for agricultural sustainability, Frontiers in Bioengineering and Biotechnology, 7: 24. https://doi.org/10.3389/fbioe.2019.00024 Baranek J., Banaszak M., Lorent D., Kaznowski A., and Konecka E., 2021, Insecticidal activity of Bacillus thuringiensis Cry1, Cry2 and Vip3 toxin combinations in Spodoptera exigua control: highlights on synergism and data scoring, Entomologia Generalis, 41: 71-82. https://doi.org/10.1127/entomologia/2020/0995 Baranek J., Pogodzinski B., Szipluk N., and Zielezinski A., 2020, TOXiTAXi: a web resource for toxicity of Bacillus thuringiensis protein compositions towards species of various taxonomic groups, Scientific Reports, 10: 19767. https://doi.org/10.1038/s41598-020-75932-7 Bretschneider A., Heckel D., and Pauchet Y., 2016, Three toxins, two receptors, one mechanism: mode of action of Cry1A toxins fromBacillus thuringiensis in Heliothis virescens, Insect Biochemistry and Molecular Biology, 76: 109-117. https://doi.org/10.1016/j.ibmb.2016.07.008 Carrière Y., Crickmore N., and Tabashnik B., 2015, Optimizing pyramided transgenic Bt crops for sustainable pest management, Nature Biotechnology, 33: 161-168. https://doi.org/10.1038/nbt.3099 Chakroun M., Banyuls N., Bel Y., Escriche B., and Ferré J., 2016, Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria, Microbiology and Molecular Biology Reviews, 80(2): 329-350. https://doi.org/10.1128/MMBR.00060-15 Chen Z.W., He F., Xiao Y.T., Liu C.X., Li J.H., Yang Y.B., Ai H., Peng J.X., Hong H.Z., and Liu K.Y., 2015, Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac, Insect Biochemistry and Molecular Biology, 59: 1-17. https://doi.org/10.1016/j.ibmb.2015.01.014 Dively G., Kuhar T., Taylor S., Doughty H., Holmstrom K., Gilrein D., Nault B., Ingerson-Mahar J., Huseth A., Reisig D., Fleischer S., Owens D., Tilmon K., Reay-Jones F., Porter P., Smith J., Saguez J., Wells J., Congdon C., Byker H., Jensen B., Difonzo C., Hutchison W., Burkness E., Wright R., Crossley M., Darby H., Bilbo T., Seiter N., Krupke C., Abel C., Coates B., Mcmanus B., Fuller B., Bradshaw J., Peterson J., Buntin, D., Paula-Moraes S., Kesheimer K., Crow W., Gore J., Huang F., Ludwick D., Raudenbush A., Jimenez S., Carri Y., Elkner T., and Hamby K., 2023, Extended sentinel monitoring of Helicoverpa zea resistance to Cry and Vip3Aa toxins in Bt sweet corn: assessing changes in phenotypic and allele frequencies of resistance, Insects, 14(7): 577. https://doi.org/10.3390/insects14070577 Garcia-Gomez B., Sánchez T., Cano S., Nascimento N., Bravo A., and Soberon M., 2023, Insect chaperones Hsp70 and Hsp90 cooperatively enhance toxicity of Bacillus thuringiensis Cry1A toxins and counteract insect resistance, Frontiers in Immunology, 14: 1151943. https://doi.org/10.3389/fimmu.2023.1151943 Gassmann A., 2021, Resistance to Bt maize by western corn rootworm: effects of pest biology, the pest-crop interaction and the agricultural landscape on resistance, Insects, 12(2): 136. https://doi.org/10.3390/insects12020136 Gassmann A., and Reisig D., 2022, Management of insect pests with Bt crops in the United States, Annual Review of Entomology, 68: 31-49. https://doi.org/10.1146/annurev-ento-120220-105502 Gupta M., Kumar H., and Kaur S., 2021, Vegetative insecticidal protein (Vip): a potential contender fromBacillus thuringiensis for efficient management of various detrimental agricultural pests, Frontiers in Microbiology, 12: 659736. https://doi.org/10.3389/fmicb.2021.659736 Huang J.L., Xu Y.J., Zuo Y.Y., Yang Y.H., Tabashnik B., and Wu Y.D., 2020, Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts, Insect Biochemistry and Molecular Biology, 121: 103361. https://doi.org/10.1016/j.ibmb.2020.103361 Huang K.Y., He H.B., Wang S., Zhang M., Chen X.W., Deng Z.Y., Ni X.Z., and Li X.C., 2023, Sequential and simultaneous interactions of plant allelochemical flavone, Bt Toxin Vip3A, and insecticide emamectin benzoate in Spodoptera frugiperda, Insects, 14(9): 736. https://doi.org/10.3390/insects14090736 Jurat-Fuentes J., Heckel D., and Ferré J., 2021, Mechanisms of resistance to insecticidal proteins fromBacillus thuringiensis, Annual Review of Entomology, 66: 121-140. https://doi.org/10.1146/annurev-ento-052620-073348.
RkJQdWJsaXNoZXIy MjQ4ODYzNA==