Bt Research 2024, Vol.15, No.5, 223-231 http://microbescipublisher.com/index.php/bt 230 Dambach P., Louis V., Kaiser A., Ouedraogo S., Sié A., Sauerborn R., and Becker N., 2014, Efficacy of Bacillus thuringiensis var. israelensis against malaria mosquitoes in northwestern Burkina Faso, Parasites and Vectors, 7: 1-8. https://doi.org/10.1186/1756-3305-7-371 Dambach P., Winkler V., Bärnighausen T., Traoré I., Ouedraogo S., Sié A., Sauerborn R., Becker N., and Louis V., 2020, Biological larviciding against malaria vector mosquitoes with Bacillus thuringiensis israelensis (Bti)-long term observations and assessment of repeatability during an additional intervention year of a large-scale field trial in rural Burkina Faso, Global Health Action, 13(1): 1829828. https://doi.org/10.1080/16549716.2020.1829828 Derua Y., Kahindi S., Mosha F., Kweka E., Atieli H., Wang X., Zhou G., Lee M., Githeko A., and Yan G., 2018, Microbial larvicides for mosquito control: Impact of long lasting formulations of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on non‐target organisms in western Kenya highlands, Ecology and Evolution, 8: 7563-7573. https://doi.org/10.1002/ece3.4250 Dorsch J., Candas M., Griko N., Maaty W., Midboe E., Vadlamudi R., and Bulla L., 2002, Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis., Insect Biochemistry and Molecular Biology, 32(9): 1025-1036. https://doi.org/10.1016/S0965-1748(02)00040-1 Gan S.J., Leong Y.Q., Barhanuddin M., Wong S.T., Wong S.F., Mak J.W., and Ahmad R.B., 2021, Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review, Parasites and Vectors, 14(1): 315. https://doi.org/10.1186/s13071-021-04785-4 Hakizimana E., Ingabire C., Rulisa A., Kateera F., Borne B., Muvunyi C., Vugt M., Mutesa L., Bron G., Takken W., and Koenraadt C., 2022, Community-based control of malaria vectors using Bacillus thuringiensis va. israelensis (Bti) in Rwanda, International Journal of Environmental Research and Public Health, 19(11): 6699. https://doi.org/10.3390/ijerph19116699 Hayakawa T., Sakakibara A., Ueda S., Azuma Y., Ide T., and Takebe S., 2017, Cry46Ab fromBacillus thuringiensis TK-E6 is a new mosquitocidal toxin with aerolysin-type architecture., Insect Biochemistry and Molecular Biology, 87: 100-106. https://doi.org/10.1016/j.ibmb.2017.06.015 Hladish T., Pearson C., Rojas D., Gomez-Dantes H., Halloran M., Vazquez-Prokopec G., and Longini I., 2018, Forecasting the effectiveness of indoor residual spraying for reducing dengue burden, PLoS Neglected Tropical Diseases, 12(6): e0006570. https://doi.org/10.1371/journal.pntd.0006570 Ho S.T., Lim J., Ong J.H., Hapuarachchi H.C., Sim S., and Ng L.C., 2023, Singapore’s 5 decades of dengue prevention and control-Implications for global dengue control, PLOS Neglected Tropical Diseases, 17(6): e0011400. https://doi.org/10.1371/journal.pntd.0011400 Jiang Y.J., 2024, The potential impact of microorganisms on mosquito behavior, Journal of Mosquito Research, 14(1): 34-48. https://doi.org/10.5376/jmr.2024.14.0005 Jurat-Fuentes J., Heckel D., and Ferré J., 2021, Mechanisms of resistance to insecticidal proteins fromBacillus thuringiensis, Annual Review of Entomology, 66: 121-140. https://doi.org/10.1146/annurev-ento-052620-073348 Kang S., Odom O., Thangamani S., and Herrin D., 2017, Toward mosquito control with a green alga: expression of Cry toxins of Bacillus thuringiensis subsp. israelensis (Bti) in the chloroplast of Chlamydomonas, Journal of Applied Phycology, 29: 1377-1389. https://doi.org/10.1007/s10811-016-1008-z Liu T., Xie Y.G., Lin F., Xie L.H., Yang W.Q., Su X.H, Ou C.Q., Luo L., Xiao Q., Gan L., and Chen X.G., 2020, A long-lasting biological larvicide against the dengue vector mosquito Aedes albopictus, Pest Management Science, 77(2): 741-748. https://doi.org/10.1002/ps.6069 Ogunlade S.T., Meehan M.T., Adekunle A.L., and McBryde E.S., 2023, A systematic review of mathematical models of dengue transmission and vector control: 2010-2020, Viruses, 15(1): 254. https://doi.org/10.3390/v15010254 Oliver J., Larsen S., Stinear T., Hoffmann A., Crouch S., and Gibney K., 2021, Reducing mosquito-borne disease transmission to humans: A systematic review of cluster randomised controlled studies that assess interventions other than non-targeted insecticide, PLoS Neglected Tropical Diseases, 15(7): e0009601. https://doi.org/10.1371/journal.pntd.0009601 Overgaard H., Linn N., Kyaw A., Braack L., Tin M., Bastien S., Velde F., Echaubard P., Zaw W., Mukaka M., and Maude R., 2022, School and community driven dengue vector control and monitoring in Myanmar: study protocol for a cluster randomized controlled trial, Wellcome Open Research, 7: 206. https://doi.org/10.12688/wellcomeopenres.18027.1 Paris M., Tetreau G., Laurent F., Lélu M., Després L., and David J., 2011, Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes, Pest management science, 67(1): 122-128. https://doi.org/10.1002/ps.2046 Park Y., Jung J., and Kim Y., 2016, A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila-cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae), Journal of Economic Entomology, 109: 1086-1093. https://doi.org/10.1093/jee/tow063
RkJQdWJsaXNoZXIy MjQ4ODYzNA==