Bt Research 2024, Vol.15, No.5, 215-222 http://microbescipublisher.com/index.php/bt 222 Li X.Y., Miyamoto K., Takasu Y., Wada S., Iizuka T., Adegawa S., Sato R., and Watanabe K., 2020, ATP-binding cassette subfamily a member 2 is a functional receptor for Bacillus thuringiensis Cry2A toxins in Bombyx mori, but not for Cry1A Cry1C Cry1D Cry1F or Cry9A toxins, Toxins, 12(2): 104. https://doi.org/10.3390/toxins12020104 Li Y.J., Wang C., Ge L., Hu C., Wu G.G., Sun Y., Song L.L., Wu X., Pan A.H., Xu Q.Q., Shi J.L., Liang J.G., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Liu L., Wilcox X., Fisher A., Boyd S., Zhi J., Winkler D., and Bulla L., 2022, Functional and structural analysis of the toxin-binding site of the cadherin G-protein-coupled receptor BT-R1 for Cry1A toxins of Bacillus thuringiensis, Biochemistry, 61(9): 752-766. https://doi.org/10.1021/acs.biochem.2c00089 Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X., and Jin S., 2020, CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design off‐target evaluation and strategies to mitigate off‐target effects, Advanced Science, 7(6): 1902312. https://doi.org/10.1002/advs.201902312 Oliveira A., Wanderley-Teixeira V., Silva C., Teixeira Á., Siqueira H., Cruz G., Neto C., Lima A., and Correia M., 2018, Labeling membrane receptors with lectins and evaluation of the midgut histochemistry of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) populations with different levels of susceptibility to formulated Bt, Pest Management Science, 74(11): 2608-2617. https://doi.org/10.1002/ps.5051 Pacheco S., Gómez I., Chiñas M., Sánchez J., Soberón M., and Bravo A., 2021, Whole genome sequencing analysis of Bacillus thuringiensis GR007 reveals multiple pesticidal protein genes, Frontiers in Microbiology, 12: 758314. https://doi.org/10.3389/fmicb.2021.758314 Peña-Cardeña A., Grande R., Sánchez J., Tabashnik B., Bravo A., Soberón M., and Gómez I., 2018, The C-terminal protoxin region of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut, The Journal of Biological Chemistry, 293: 20263-20272. https://doi.org/10.1074/jbc.RA118.005101 Pinos D., Andrés-Garrido A., Ferré J., and Hernández-Martínez P., 2021, response mechanisms of invertebrates to Bacillus thuringiensis and its pesticidal proteins, Microbiology and Molecular Biology Reviews, 85(1): 1-32. https://doi.org/10.1128/MMBR.00007-20 Ren Y.C., Zhou X.L., Dong Y., Zhang J., Wang J.M., and Yang M.S., 2021, Exogenous gene expression and insect resistance in Dual Bt Toxin Populus×euramericana ‘Neva’ transgenic plants, Frontiers in Plant Science, 12: 660226. https://doi.org/10.3389/fpls.2021.660226 Romeis J., Naranjo S., Meissle M., and Shelton A., 2019, Genetically engineered crops help support conservation biological control, Biological Control, 130: 136-154. https://doi.org/10.1016/J.BIOCONTROL.2018.10.001 Song F.F., Chen C., Wu S.Q., Shao E., Li M.N., Guan X., and Huang Z.P., 2016, Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation, Scientific Reports, 6: 23861. https://doi.org/10.1038/srep23861 Sun Y.W., Zhang X., Wu C.Y., He Y.B., Ma Y.Z., Hou H., Guo X.P., Du W.M., Zhao Y.D., and Xia L.Q., 2016, Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of Acetolactate Synthase, Molecular plant, 9(4): 628-631. https://doi.org/10.1016/j.molp.2016.01.001 Thammasittirong A., Thammasittirong S., Imtong C., Charoenjotivadhanakul S., Sakdee S., Li H., Okonogi S., and Angsuthanasombat C., 2021, Bacillus thuringiensis Cry4Ba insecticidal toxinexploits Leu615 in its C-terminal domain to interact with a target receptor—Aedes aegypti membrane-bound alkaline phosphatase, Toxins, 13(8): 553. https://doi.org/10.3390/toxins13080553 Valtierra-de-Luis D., Villanueva M., Lai L., Williams T., and Caballero P., 2020, Potential of Cry10Aa and Cyt2Ba two minority δ-endotoxins produced by Bacillus thuringiensis ser. israelensis for the control of Aedes aegypti larvae, Toxins, 12(6): 355. https://doi.org/10.3390/toxins12060355 Wang S.H., Zhang S.B., Wang W.X., Xiong X.Y., Meng F.R., and Cui X., 2015, Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system, Plant Cell Reports, 34: 1473-1476. https://doi.org/10.1007/s00299-015-1816-7 Wei W., Pan S., Ma Y.M., Xiao Y.T., Yang Y.B., He S.J., Bravo A., Soberón M., and Liu K.Y., 2019, GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility, Insect biochemistry and Molecular Biology, 118: 103306. https://doi.org/10.1016/j.ibmb.2019.103306 Xiao Y.T., and Wu K.M., 2019, Recent progress on the interaction between insects and Bacillus thuringiensis crops, Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1767): 1-15. https://doi.org/10.1098/rstb.2018.0316 Xuan J., 2024, Advances in biological control methods for managing sugarcane insects, Molecular Entomology, 15(1): 23-31. https://doi.org/10.5376/me.2024.15.0004
RkJQdWJsaXNoZXIy MjQ4ODYzNA==