Bt Research 2024, Vol.15, No.5, 215-222 http://microbescipublisher.com/index.php/bt 221 References Arora L., and Narula A., 2017, Gene editing and crop improvement using CRISPR-Cas9 system, Frontiers in Plant Science, 8: 1932. https://doi.org/10.3389/fpls.2017.01932 Arsov A., Gerginova M., Paunova-Krasteva T., Petrov K., and Petrova P., 2023, Multiple cry genes in Bacillus thuringiensis strain BTG suggest a broad-spectrum insecticidal activity, International Journal of Molecular Sciences, 24(13): 11137. https://doi.org/10.3390/ijms241311137 Benfarhat-Touzri D., Jemli S., Driss F., and Tounsi S., 2019, Molecular and structural characterization of a novel Cry1D toxin fromBacillus thuringiensis with high toxicity to Spodoptera littoralis (Lepidoptera: Noctuidae), International Journal of Biological Macromolecules, 126: 969-976. https://doi.org/10.1016/j.ijbiomac.2018.12.175 Caballero J., Jiménez-Moreno N., Orera I., Williams T., Fernández A., Villanueva M., Ferré J., Caballero P., and Ancín-Azpilicueta C., 2020, Unraveling the composition of insecticidal crystal proteins in Bacillus thuringiensis: a proteomics approach, Applied and Environmental Microbiology, 86(12): e00476-20. https://doi.org/10.1128/AEM.00476-20 Cao B.B., Shu C.L., Geng L.L., Song F.P., and Zhang J., 2020, Cry78Ba1 one novel crystal protein fromBacillus thuringiensis with high insecticidal activity against rice planthopper, Journal of Agricultural and Food Chemistry, 68(8): 2539-2546. https://doi.org/10.1021/acs.jafc.9b07429 Chen D.Q., Moar W., Jerga A., Gowda A., Milligan J., Bretsynder E., Rydel T., Baum J., Semeão A., Fu X.R., Guzov V., Gabbert K., Head G., and Haas J., 2021, Bacillus thuringiensis chimeric proteins Cry1A.2 and Cry1B.2 to control soybean lepidopteran pests: new domain combinations enhance insecticidal spectrum of activity and novel receptor contributions, PLoS ONE, 16(6): e0249150. https://doi.org/10.1371/journal.pone.0249150 Chen Z.W., He F., Xiao Y.T., Liu C.X., Li J.H., Yang Y.B., Ai H., Peng J.X., Hong H.Z., and Liu K.Y., 2015, Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac, Insect Biochemistry and Molecular Biology, 59: 1-17. https://doi.org/10.1016/j.ibmb.2015.01.014 Coates B., 2016, Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer Ostrinia nubilalis, Current Opinion in Insect Science, 15: 70-77. https://doi.org/10.1016/j.cois.2016.04.003 Dutta T., Veeresh A., Phani V., Kundu A., Santhoshkumar K., Mathur C., Sagar D., and Sreevathsa R., 2022, Molecular characterization and functional analysis of Cry toxin receptor‐like genes from the model insect Galleria mellonella, Insect Molecular Biology, 31(4): 434-446. https://doi.org/10.1111/imb.12770 Feng Y., 2024, Exploring the diversity of gene expression in superspecies driven by environmental adaptation, International Journal of Super Species Research, 14(1): 8-15. https://doi.org/10.5376/ijssr.2024.14.0002 Gassmann A., and Reisig D., 2022, Management of insect pests with Bt crops in the United States, Annual Review of Entomology, 68: 31-49. https://doi.org/10.1146/annurev-ento-120220-105502 Guo Z.J., Kang S., Chen D.F., Wu Q.J., Wang S.L., Xie W., Zhu X., Baxter S., Zhou X.G., Jurat-Fuentes J., and Zhang Y.J., 2015, MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in Diamondback Moth, PLoS Genetics, 11(4): e1005124. https://doi.org/10.1371/journal.pgen.1005124 Guo Z.J., Sun D., Kang S., Zhou J.L., Gong L.J., Qin J.Y., Guo L., Zhu L.H., Bai Y., Luo L., and Zhang Y.J., 2019, CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), Insect Biochemistry And Molecular Biology, 107: 31-38. https://doi.org/10.1016/j.ibmb.2019.01.009 Gupta M., Kumar H., and Kaur S., 2021, Vegetative insecticidal protein (Vip): a potential contender fromBacillus thuringiensis for efficient management of various detrimental agricultural pests, Frontiers in Microbiology, 12: 659736. https://doi.org/10.3389/fmicb.2021.659736 Hang P., Linh N., Ha N., Dong N., and Hien L., 2021, Genome sequence of a Vietnamese Bacillus thuringiensis strain TH19 reveals two potential insecticidal crystal proteins against Etiella zinckenella larvae, Biological Control, 152: 104473. https://doi.org/10.1016/j.biocontrol.2020.104473 Jurat-Fuentes J., Heckel D., and Ferré J., 2021, Mechanisms of resistance to insecticidal proteins fromBacillus thuringiensis, Annual Review of Entomology, 66: 121-140. https://doi.org/10.1146/annurev-ento-052620-073348 Koch M., Ward J., Levine S., Baum J., Vicini J., and Hammond B., 2015, The food and environmental safety of Bt crops, Frontiers in Plant Science, 6: 283. https://doi.org/10.3389/fpls.2015.00283 Kouadio J., Zheng M., Aikins M., Duda D., Duff S., Chen D., Zhang J., Milligan J., Taylor C., Mamanella P., Rydel T., Kessenich C., Panosian T., Yin Y., Moar W., Giddings K., Park Y., Jerga A., and Haas J., 2021, Structural and functional insights into the first Bacillus thuringiensis vegetative insecticidal protein of the Vpb4 fold active against western corn rootworm, PLoS ONE, 16(12): e0260532. https://doi.org/10.1371/journal.pone.0260532 Li J.H., Ma Y.M., Yuan W.L., Xiao Y.T., Liu C.X., Wang J., Peng J.X., Peng R., Soberón M., Bravo A., Yang Y.B., and Liu K.Y., 2017, FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes, Insect Biochemistry and Molecular Biology, 88: 1-11. https://doi.org/10.1016/j.ibmb.2017.07.004
RkJQdWJsaXNoZXIy MjQ4ODYzNA==