Bt Research 2024, Vol.15, No.4, 204-214 http://microbescipublisher.com/index.php/bt 213 Bravo A., Castro D., Sánchez J., Cantón P., Mendoza G., Gómez I., Pacheco S., Garcia-Gómez B., Onofre J., Ocelotl J., and Soberón M., 2015, Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests, The Comprehensive Sourcebook of Bacterial Protein Toxins, 6: 858-873. https://doi.org/10.1016/B978-0-12-800188-2.00030-6 Bravo A., Pacheco S., Gómez I., Garcia-Gómez B., Onofre J., and Soberón M., 2017, Insecticidal proteins fromBacillus thuringiensis and their mechanism of action, Bacillus thuringiensis and Lysinibacillus Sphaericus, 4: 53-66. https://doi.org/10.1007/978-3-319-56678-8_4 Chen D.Q., Moar W., Jerga A., Gowda A., Milligan J., Bretsynder E., Rydel T., Baum J., Semeão A., Fu X.R., Guzov V., Gabbert K., Head G., and Haas J., 2021, Bacillus thuringiensis chimeric proteins Cry1A.2 and Cry1B.2 to control soybean lepidopteran pests: new domain combinations enhance insecticidal spectrum of activity and novel receptor contributions, PLoS ONE, 16(6): e0249150. https://doi.org/10.1371/journal.pone.0249150 Ding W.T., Zhang Y., and Shi S.B., 2020, Development and application of CRISPR/Cas in microbial biotechnology, Frontiers in Bioengineering and Biotechnology, 8: 711. https://doi.org/10.3389/fbioe.2020.00711 Jakočiūnas T., Jensen M., and Keasling J., 2016, CRISPR/Cas9 advances engineering of microbial cell factories, Metabolic Engineering, 34: 44-59. https://doi.org/10.1016/j.ymben.2015.12.003 Jakočiūnas T., Jensen M., and Keasling J., 2017, System-level perturbations of cell metabolism using CRISPR/Cas9, Current Opinion in Biotechnology, 46: 134-140. https://doi.org/10.1016/j.copbio.2017.03.014 Jin M.H., Shan Y.X., Peng Y., Wang P., Li Q., Yu S.M., Zhang L., and Xiao Y.T., 2022, An integrative analysis of transcriptomics and proteomics reveals novel insights into the response in the midgut of Spodoptera frugiperda larvae to Vip3Aa, Toxins, 14(1): 55. https://doi.org/10.3390/toxins14010055 Jurat-Fuentes J., Heckel D., and Ferré J., 2021, Mechanisms of resistance to insecticidal proteins fromBacillus thuringiensis, Annual Review of Entomology, 66: 121-140. https://doi.org/10.1146/annurev-ento-052620-073348 Koch M., Ward J., Levine S., Baum J., Vicini J., and Hammond B., 2015, The food and environmental safety of Bt crops, Frontiers in Plant Science, 6: 283. https://doi.org/10.3389/fpls.2015.00283 Li Y., Lin Z., Huang C., Zhang Y., Wang Z., Tang Y., Chen T., and Zhao X., 2015, Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing, Metabolic Engineering 31: 13-21. https://doi.org/10.1016/j.ymben.2015.06.006 Li Y.J., Wang C., Ge L., Hu C., Wu G.G., Sun Y., Song L.L., Wu X., Pan A.H., Xu Q.Q., Shi J.L., Liang J.G., and Li P., 2022, Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology, Plants, 11(9): 1212. https://doi.org/10.3390/plants11091212 Liu M.M., Huang R., Weisman A., Yu X.Y., Lee S., Chen Y., Huang C., Hu S.H., Chen X.H., Tan W.F., Liu F., Chen H., and Shea K., 2018, Synthetic polymer affinity ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac protein: the use of biomimicry based on the Bt protein-insect receptor binding mechanism, Journal of the American Chemical Society, 140(22): 6853-6864. https://doi.org/10.1021/jacs.8b01710 Mougiakos I., Bosma E., Ganguly J., Oost J., and Kranenburg R., 2018, Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects, Current Opinion in Biotechnology 50: 146-157. https://doi.org/10.1016/j.copbio.2018.01.002 Mougiakos I., Bosma E., Vos W., Kranenburg R., and Oost J., 2016, Next generation prokaryotic engineering: the CRISPR-Cas toolkit, Trends in Biotechnology 34(7): 575-587. https://doi.org/10.1016/j.tibtech.2016.02.004 Nair K., Al-thani R., Ginibre C., Chandre F., Alsafran M., and Jaoua S., 2020, Bacillus thuringiensis strains isolated from Qatari soil synthesizing δ-endotoxins highly active against the disease vector insect Aedes aegypti Bora Bora, Heliyon, 6(10): E05003. https://doi.org/10.1016/j.heliyon.2020.e05003 Nishida K., and Kondo A., 2020, CRISPR-derived genome editing technologies for metabolic engineering, Metabolic Engineering, 63: 141-147. https://doi.org/10.1016/j.ymben.2020.12.002 Pan Z.Z., Xu L., Zheng Y.S., Niu L., Liu B., Fu N.Y., Shi Y., Chen Q.X., Zhu Y.J., and Guan X., 2019, Synthesis and characterization of Cry2Ab–AVM bioconjugate: enhanced affinity to binding proteins and insecticidal activity, Toxins, 11(9): 497. https://doi.org/10.3390/toxins11090497 Rao W., Zhan Y., Chen S., Xu Z., Huang T., Hong X., Zheng Y., Pan X., and Guan X., 2018, Flowerlike Mg(OH)2 cross-nanosheets for controlling Cry1Ac protein loss: evaluation of insecticidal activity and biosecurity, Journal of Agricultural and Food Chemistry, 66(14): 3651-3657. https://doi.org/10.1021/acs.jafc.8b00575 Rathinam M., Kesiraju K., Singh S., Thimmegowda V., Rai V., Pattanayak D., and Sreevathsa R., 2019, Molecular interaction-based exploration of the broad spectrum efficacy of a Bacillus thuringiensis insecticidal chimeric protein Cry1AcF, Toxins 11(3): 143. https://doi.org/10.3390/toxins11030143
RkJQdWJsaXNoZXIy MjQ4ODYzNA==